Optimization approaches for enhanced operation and planning of distribution systems : a multi-objective perspective

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Ferraz, Renato Santos Freire
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
eng
Instituição de defesa: Universidade Federal do Espírito Santo
BR
Doutorado em Engenharia Elétrica
Centro Tecnológico
UFES
Programa de Pós-Graduação em Engenharia Elétrica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufes.br/handle/10/18687
Resumo: Efficient planning and operation strategies are essential for modern electric power networks to ensure cost-effective electricity delivery while maintaining reliable performance. However, the ongoing transformation of traditional centralized distribution systems, driven by the integration of distributed energy resources (DERs) and the growing adoption of electric vehicles (EVs), has introduced new and complex challenges for distribution system operators (DSOs). To address these issues, this thesis proposes multi-objective optimization approaches aimed at enhancing the planning and operation of distribution networks from the DSO’s perspective. The first approach focuses on the optimized allocation and sizing of DERs while ensuring recloser fuse coordination to preserve the original network protection scheme. The second approach handles the static network reconfiguration problem, incorporating the allocation and sizing of DERs and capacitors. The third approach extends this to dynamic network reconfiguration, considering DERs, capacitors, and electric vehicle charging stations. Finally, the fourth approach explores the dynamic network reconfiguration, capacitors allocation, and on-load tap changer adjustment, while accounting for stochastic customer-owned DERs. The main objectives are to minimize investment and operational costs, improve the system’s performance indicators–such as power losses and voltage deviation–and ensure the proper operation of the distribution system. Stochastic variations in DER generation, load profiles, and EV distribution throughout the day are modeled using the Monte Carlo Method. The multi-objective optimization problems are solved using the Non-dominated Sorting Genetic Algorithm II and the Multi-objective Cuckoo Search, with the final solution selected through the Fuzzy Decision-making Method. The results demonstrate significant improvements in the performance indicators of the distribution system, achieved while meeting all operational constraints
id UFES_710af3690dbe2373c1d28b4564db2e72
oai_identifier_str oai:repositorio.ufes.br:10/18687
network_acronym_str UFES
network_name_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository_id_str
spelling Optimization approaches for enhanced operation and planning of distribution systems : a multi-objective perspectiveCapacitorDistributed energy resourceElectric vehicle charging stationMulti-objective optimizationNetwork reconfigurationRadial distribution systemCapacitorGeração distribuídaEstação de recarga de veículos elétricosOtimização multiobjetivoReconfiguração de redeSistema de distribuição radialEngenharia ElétricaEfficient planning and operation strategies are essential for modern electric power networks to ensure cost-effective electricity delivery while maintaining reliable performance. However, the ongoing transformation of traditional centralized distribution systems, driven by the integration of distributed energy resources (DERs) and the growing adoption of electric vehicles (EVs), has introduced new and complex challenges for distribution system operators (DSOs). To address these issues, this thesis proposes multi-objective optimization approaches aimed at enhancing the planning and operation of distribution networks from the DSO’s perspective. The first approach focuses on the optimized allocation and sizing of DERs while ensuring recloser fuse coordination to preserve the original network protection scheme. The second approach handles the static network reconfiguration problem, incorporating the allocation and sizing of DERs and capacitors. The third approach extends this to dynamic network reconfiguration, considering DERs, capacitors, and electric vehicle charging stations. Finally, the fourth approach explores the dynamic network reconfiguration, capacitors allocation, and on-load tap changer adjustment, while accounting for stochastic customer-owned DERs. The main objectives are to minimize investment and operational costs, improve the system’s performance indicators–such as power losses and voltage deviation–and ensure the proper operation of the distribution system. Stochastic variations in DER generation, load profiles, and EV distribution throughout the day are modeled using the Monte Carlo Method. The multi-objective optimization problems are solved using the Non-dominated Sorting Genetic Algorithm II and the Multi-objective Cuckoo Search, with the final solution selected through the Fuzzy Decision-making Method. The results demonstrate significant improvements in the performance indicators of the distribution system, achieved while meeting all operational constraintsEstratégias eficientes de planejamento e operação são essenciais para as redes elétricas modernas, garantindo o fornecimento de energia de forma econômica e mantendo um desempenho confiável. Noentanto, a transformação dos sistemas de distribuição centralizados tradicionais, impulsionada pela integração da geração distribuída (GD) e pela crescente adoção de veículos elétricos, introduziu novos e complexos desafios para os operadores de sistemas de distribuição. Para enfrentar esses desafios, esta tese propõe abordagens de otimização multiobjetivo voltadas para o aprimoramento do planejamento e operação das redes de distribuição sob a perspectiva dos operadores do sistema. A primeira abordagem trata da alocação e dimensionamento otimizados da GD, garantindo a coordenação entre religadores e fusíveis para preservar o esquema de proteção original da rede. A segunda abordagem resolve o problema da reconfiguração estática da rede, incorporando a alocação e o dimensionamento da GD e de bancos de capacitores. A terceira abordagem estende essa análise para a reconfiguração dinâmica da rede, considerando GD,capacitores e estações de recarga de veículos elétricos. Por fim, a quarta abordagem investiga a reconfiguração dinâmica da rede, a alocação de capacitores e o ajuste do transformador com tap sob carga, levando em conta a incerteza associada à GD instalada por consumidores. Os principais objetivos são minimizar os custos de investimento e operação, aprimorar os indicadores de desempenho do sistema–como perdas elétricas e desvio de tensão–e garantir o funcionamento adequado da rede de distribuição. As variações estocásticas da geração da GD, dos perfis de carga e da distribuição de veículos elétricos ao longo do dia são modeladas por meio do Método de Monte Carlo. Os problemas de otimização multiobjetivo são resolvidos utilizando o Algoritmo Genético de Ordenação Não Dominada II e o Método Busca do Cuco Multiobjetivo, com a solução final sendo selecionada pelo Método de Tomada de Decisão Fuzzy. Os resultados demonstram melhorias significativas nos indicadores de desempenho da rede de distribuição, garantindo o atendimento a todas as restrições operacionaisFundação de Amparo à Pesquisa e Inovação do Espírito Santo (Fapes)Universidade Federal do Espírito SantoBRDoutorado em Engenharia ElétricaCentro TecnológicoUFESPrograma de Pós-Graduação em Engenharia ElétricaRueda Medina, Augusto César https://orcid.org/0000-0002-4291-3153http://lattes.cnpq.br/7397584412509839https://orcid.org/0000-0001-7571-1972http://lattes.cnpq.br/1832936459743268Fardin, Jussara Fariashttps://orcid.org/0000-0003-4785-556Xhttp://lattes.cnpq.br/1912113095988528Batista, Oureste Eliashttp://orcid.org/0000-0003-4719-4132http://lattes.cnpq.br/3717606765861586Franco Baquero, John Fredy https://orcid.org/0000-0002-7191-012Xhttp://lattes.cnpq.br/8253028254016321Donadel, Clainer Bravin https://orcid.org/0000-0002-3310-2762http://lattes.cnpq.br/8624415630257203Ferraz, Renato Santos Freire2025-03-24T20:13:59Z2025-03-24T20:13:59Z2025-02-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisTextapplication/pdfhttp://repositorio.ufes.br/handle/10/18687porenghttps://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFES2025-03-25T09:43:37Zoai:repositorio.ufes.br:10/18687Repositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestriufes@ufes.bropendoar:21082025-03-25T09:43:37Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false
dc.title.none.fl_str_mv Optimization approaches for enhanced operation and planning of distribution systems : a multi-objective perspective
title Optimization approaches for enhanced operation and planning of distribution systems : a multi-objective perspective
spellingShingle Optimization approaches for enhanced operation and planning of distribution systems : a multi-objective perspective
Ferraz, Renato Santos Freire
Capacitor
Distributed energy resource
Electric vehicle charging station
Multi-objective optimization
Network reconfiguration
Radial distribution system
Capacitor
Geração distribuída
Estação de recarga de veículos elétricos
Otimização multiobjetivo
Reconfiguração de rede
Sistema de distribuição radial
Engenharia Elétrica
title_short Optimization approaches for enhanced operation and planning of distribution systems : a multi-objective perspective
title_full Optimization approaches for enhanced operation and planning of distribution systems : a multi-objective perspective
title_fullStr Optimization approaches for enhanced operation and planning of distribution systems : a multi-objective perspective
title_full_unstemmed Optimization approaches for enhanced operation and planning of distribution systems : a multi-objective perspective
title_sort Optimization approaches for enhanced operation and planning of distribution systems : a multi-objective perspective
author Ferraz, Renato Santos Freire
author_facet Ferraz, Renato Santos Freire
author_role author
dc.contributor.none.fl_str_mv Rueda Medina, Augusto César
https://orcid.org/0000-0002-4291-3153
http://lattes.cnpq.br/7397584412509839
https://orcid.org/0000-0001-7571-1972
http://lattes.cnpq.br/1832936459743268
Fardin, Jussara Farias
https://orcid.org/0000-0003-4785-556X
http://lattes.cnpq.br/1912113095988528
Batista, Oureste Elias
http://orcid.org/0000-0003-4719-4132
http://lattes.cnpq.br/3717606765861586
Franco Baquero, John Fredy
https://orcid.org/0000-0002-7191-012X
http://lattes.cnpq.br/8253028254016321
Donadel, Clainer Bravin
https://orcid.org/0000-0002-3310-2762
http://lattes.cnpq.br/8624415630257203
dc.contributor.author.fl_str_mv Ferraz, Renato Santos Freire
dc.subject.por.fl_str_mv Capacitor
Distributed energy resource
Electric vehicle charging station
Multi-objective optimization
Network reconfiguration
Radial distribution system
Capacitor
Geração distribuída
Estação de recarga de veículos elétricos
Otimização multiobjetivo
Reconfiguração de rede
Sistema de distribuição radial
Engenharia Elétrica
topic Capacitor
Distributed energy resource
Electric vehicle charging station
Multi-objective optimization
Network reconfiguration
Radial distribution system
Capacitor
Geração distribuída
Estação de recarga de veículos elétricos
Otimização multiobjetivo
Reconfiguração de rede
Sistema de distribuição radial
Engenharia Elétrica
description Efficient planning and operation strategies are essential for modern electric power networks to ensure cost-effective electricity delivery while maintaining reliable performance. However, the ongoing transformation of traditional centralized distribution systems, driven by the integration of distributed energy resources (DERs) and the growing adoption of electric vehicles (EVs), has introduced new and complex challenges for distribution system operators (DSOs). To address these issues, this thesis proposes multi-objective optimization approaches aimed at enhancing the planning and operation of distribution networks from the DSO’s perspective. The first approach focuses on the optimized allocation and sizing of DERs while ensuring recloser fuse coordination to preserve the original network protection scheme. The second approach handles the static network reconfiguration problem, incorporating the allocation and sizing of DERs and capacitors. The third approach extends this to dynamic network reconfiguration, considering DERs, capacitors, and electric vehicle charging stations. Finally, the fourth approach explores the dynamic network reconfiguration, capacitors allocation, and on-load tap changer adjustment, while accounting for stochastic customer-owned DERs. The main objectives are to minimize investment and operational costs, improve the system’s performance indicators–such as power losses and voltage deviation–and ensure the proper operation of the distribution system. Stochastic variations in DER generation, load profiles, and EV distribution throughout the day are modeled using the Monte Carlo Method. The multi-objective optimization problems are solved using the Non-dominated Sorting Genetic Algorithm II and the Multi-objective Cuckoo Search, with the final solution selected through the Fuzzy Decision-making Method. The results demonstrate significant improvements in the performance indicators of the distribution system, achieved while meeting all operational constraints
publishDate 2025
dc.date.none.fl_str_mv 2025-03-24T20:13:59Z
2025-03-24T20:13:59Z
2025-02-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufes.br/handle/10/18687
url http://repositorio.ufes.br/handle/10/18687
dc.language.iso.fl_str_mv por
eng
language por
eng
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv Text
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Espírito Santo
BR
Doutorado em Engenharia Elétrica
Centro Tecnológico
UFES
Programa de Pós-Graduação em Engenharia Elétrica
publisher.none.fl_str_mv Universidade Federal do Espírito Santo
BR
Doutorado em Engenharia Elétrica
Centro Tecnológico
UFES
Programa de Pós-Graduação em Engenharia Elétrica
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
instname:Universidade Federal do Espírito Santo (UFES)
instacron:UFES
instname_str Universidade Federal do Espírito Santo (UFES)
instacron_str UFES
institution UFES
reponame_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
collection Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)
repository.mail.fl_str_mv riufes@ufes.br
_version_ 1834479094061858816