Optimization approaches for enhanced operation and planning of distribution systems : a multi-objective perspective
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por eng |
| Instituição de defesa: |
Universidade Federal do Espírito Santo
BR Doutorado em Engenharia Elétrica Centro Tecnológico UFES Programa de Pós-Graduação em Engenharia Elétrica |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://repositorio.ufes.br/handle/10/18687 |
Resumo: | Efficient planning and operation strategies are essential for modern electric power networks to ensure cost-effective electricity delivery while maintaining reliable performance. However, the ongoing transformation of traditional centralized distribution systems, driven by the integration of distributed energy resources (DERs) and the growing adoption of electric vehicles (EVs), has introduced new and complex challenges for distribution system operators (DSOs). To address these issues, this thesis proposes multi-objective optimization approaches aimed at enhancing the planning and operation of distribution networks from the DSO’s perspective. The first approach focuses on the optimized allocation and sizing of DERs while ensuring recloser fuse coordination to preserve the original network protection scheme. The second approach handles the static network reconfiguration problem, incorporating the allocation and sizing of DERs and capacitors. The third approach extends this to dynamic network reconfiguration, considering DERs, capacitors, and electric vehicle charging stations. Finally, the fourth approach explores the dynamic network reconfiguration, capacitors allocation, and on-load tap changer adjustment, while accounting for stochastic customer-owned DERs. The main objectives are to minimize investment and operational costs, improve the system’s performance indicators–such as power losses and voltage deviation–and ensure the proper operation of the distribution system. Stochastic variations in DER generation, load profiles, and EV distribution throughout the day are modeled using the Monte Carlo Method. The multi-objective optimization problems are solved using the Non-dominated Sorting Genetic Algorithm II and the Multi-objective Cuckoo Search, with the final solution selected through the Fuzzy Decision-making Method. The results demonstrate significant improvements in the performance indicators of the distribution system, achieved while meeting all operational constraints |
| id |
UFES_710af3690dbe2373c1d28b4564db2e72 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufes.br:10/18687 |
| network_acronym_str |
UFES |
| network_name_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
| repository_id_str |
|
| spelling |
Optimization approaches for enhanced operation and planning of distribution systems : a multi-objective perspectiveCapacitorDistributed energy resourceElectric vehicle charging stationMulti-objective optimizationNetwork reconfigurationRadial distribution systemCapacitorGeração distribuídaEstação de recarga de veículos elétricosOtimização multiobjetivoReconfiguração de redeSistema de distribuição radialEngenharia ElétricaEfficient planning and operation strategies are essential for modern electric power networks to ensure cost-effective electricity delivery while maintaining reliable performance. However, the ongoing transformation of traditional centralized distribution systems, driven by the integration of distributed energy resources (DERs) and the growing adoption of electric vehicles (EVs), has introduced new and complex challenges for distribution system operators (DSOs). To address these issues, this thesis proposes multi-objective optimization approaches aimed at enhancing the planning and operation of distribution networks from the DSO’s perspective. The first approach focuses on the optimized allocation and sizing of DERs while ensuring recloser fuse coordination to preserve the original network protection scheme. The second approach handles the static network reconfiguration problem, incorporating the allocation and sizing of DERs and capacitors. The third approach extends this to dynamic network reconfiguration, considering DERs, capacitors, and electric vehicle charging stations. Finally, the fourth approach explores the dynamic network reconfiguration, capacitors allocation, and on-load tap changer adjustment, while accounting for stochastic customer-owned DERs. The main objectives are to minimize investment and operational costs, improve the system’s performance indicators–such as power losses and voltage deviation–and ensure the proper operation of the distribution system. Stochastic variations in DER generation, load profiles, and EV distribution throughout the day are modeled using the Monte Carlo Method. The multi-objective optimization problems are solved using the Non-dominated Sorting Genetic Algorithm II and the Multi-objective Cuckoo Search, with the final solution selected through the Fuzzy Decision-making Method. The results demonstrate significant improvements in the performance indicators of the distribution system, achieved while meeting all operational constraintsEstratégias eficientes de planejamento e operação são essenciais para as redes elétricas modernas, garantindo o fornecimento de energia de forma econômica e mantendo um desempenho confiável. Noentanto, a transformação dos sistemas de distribuição centralizados tradicionais, impulsionada pela integração da geração distribuída (GD) e pela crescente adoção de veículos elétricos, introduziu novos e complexos desafios para os operadores de sistemas de distribuição. Para enfrentar esses desafios, esta tese propõe abordagens de otimização multiobjetivo voltadas para o aprimoramento do planejamento e operação das redes de distribuição sob a perspectiva dos operadores do sistema. A primeira abordagem trata da alocação e dimensionamento otimizados da GD, garantindo a coordenação entre religadores e fusíveis para preservar o esquema de proteção original da rede. A segunda abordagem resolve o problema da reconfiguração estática da rede, incorporando a alocação e o dimensionamento da GD e de bancos de capacitores. A terceira abordagem estende essa análise para a reconfiguração dinâmica da rede, considerando GD,capacitores e estações de recarga de veículos elétricos. Por fim, a quarta abordagem investiga a reconfiguração dinâmica da rede, a alocação de capacitores e o ajuste do transformador com tap sob carga, levando em conta a incerteza associada à GD instalada por consumidores. Os principais objetivos são minimizar os custos de investimento e operação, aprimorar os indicadores de desempenho do sistema–como perdas elétricas e desvio de tensão–e garantir o funcionamento adequado da rede de distribuição. As variações estocásticas da geração da GD, dos perfis de carga e da distribuição de veículos elétricos ao longo do dia são modeladas por meio do Método de Monte Carlo. Os problemas de otimização multiobjetivo são resolvidos utilizando o Algoritmo Genético de Ordenação Não Dominada II e o Método Busca do Cuco Multiobjetivo, com a solução final sendo selecionada pelo Método de Tomada de Decisão Fuzzy. Os resultados demonstram melhorias significativas nos indicadores de desempenho da rede de distribuição, garantindo o atendimento a todas as restrições operacionaisFundação de Amparo à Pesquisa e Inovação do Espírito Santo (Fapes)Universidade Federal do Espírito SantoBRDoutorado em Engenharia ElétricaCentro TecnológicoUFESPrograma de Pós-Graduação em Engenharia ElétricaRueda Medina, Augusto César https://orcid.org/0000-0002-4291-3153http://lattes.cnpq.br/7397584412509839https://orcid.org/0000-0001-7571-1972http://lattes.cnpq.br/1832936459743268Fardin, Jussara Fariashttps://orcid.org/0000-0003-4785-556Xhttp://lattes.cnpq.br/1912113095988528Batista, Oureste Eliashttp://orcid.org/0000-0003-4719-4132http://lattes.cnpq.br/3717606765861586Franco Baquero, John Fredy https://orcid.org/0000-0002-7191-012Xhttp://lattes.cnpq.br/8253028254016321Donadel, Clainer Bravin https://orcid.org/0000-0002-3310-2762http://lattes.cnpq.br/8624415630257203Ferraz, Renato Santos Freire2025-03-24T20:13:59Z2025-03-24T20:13:59Z2025-02-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisTextapplication/pdfhttp://repositorio.ufes.br/handle/10/18687porenghttps://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFES2025-03-25T09:43:37Zoai:repositorio.ufes.br:10/18687Repositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestriufes@ufes.bropendoar:21082025-03-25T09:43:37Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false |
| dc.title.none.fl_str_mv |
Optimization approaches for enhanced operation and planning of distribution systems : a multi-objective perspective |
| title |
Optimization approaches for enhanced operation and planning of distribution systems : a multi-objective perspective |
| spellingShingle |
Optimization approaches for enhanced operation and planning of distribution systems : a multi-objective perspective Ferraz, Renato Santos Freire Capacitor Distributed energy resource Electric vehicle charging station Multi-objective optimization Network reconfiguration Radial distribution system Capacitor Geração distribuída Estação de recarga de veículos elétricos Otimização multiobjetivo Reconfiguração de rede Sistema de distribuição radial Engenharia Elétrica |
| title_short |
Optimization approaches for enhanced operation and planning of distribution systems : a multi-objective perspective |
| title_full |
Optimization approaches for enhanced operation and planning of distribution systems : a multi-objective perspective |
| title_fullStr |
Optimization approaches for enhanced operation and planning of distribution systems : a multi-objective perspective |
| title_full_unstemmed |
Optimization approaches for enhanced operation and planning of distribution systems : a multi-objective perspective |
| title_sort |
Optimization approaches for enhanced operation and planning of distribution systems : a multi-objective perspective |
| author |
Ferraz, Renato Santos Freire |
| author_facet |
Ferraz, Renato Santos Freire |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Rueda Medina, Augusto César https://orcid.org/0000-0002-4291-3153 http://lattes.cnpq.br/7397584412509839 https://orcid.org/0000-0001-7571-1972 http://lattes.cnpq.br/1832936459743268 Fardin, Jussara Farias https://orcid.org/0000-0003-4785-556X http://lattes.cnpq.br/1912113095988528 Batista, Oureste Elias http://orcid.org/0000-0003-4719-4132 http://lattes.cnpq.br/3717606765861586 Franco Baquero, John Fredy https://orcid.org/0000-0002-7191-012X http://lattes.cnpq.br/8253028254016321 Donadel, Clainer Bravin https://orcid.org/0000-0002-3310-2762 http://lattes.cnpq.br/8624415630257203 |
| dc.contributor.author.fl_str_mv |
Ferraz, Renato Santos Freire |
| dc.subject.por.fl_str_mv |
Capacitor Distributed energy resource Electric vehicle charging station Multi-objective optimization Network reconfiguration Radial distribution system Capacitor Geração distribuída Estação de recarga de veículos elétricos Otimização multiobjetivo Reconfiguração de rede Sistema de distribuição radial Engenharia Elétrica |
| topic |
Capacitor Distributed energy resource Electric vehicle charging station Multi-objective optimization Network reconfiguration Radial distribution system Capacitor Geração distribuída Estação de recarga de veículos elétricos Otimização multiobjetivo Reconfiguração de rede Sistema de distribuição radial Engenharia Elétrica |
| description |
Efficient planning and operation strategies are essential for modern electric power networks to ensure cost-effective electricity delivery while maintaining reliable performance. However, the ongoing transformation of traditional centralized distribution systems, driven by the integration of distributed energy resources (DERs) and the growing adoption of electric vehicles (EVs), has introduced new and complex challenges for distribution system operators (DSOs). To address these issues, this thesis proposes multi-objective optimization approaches aimed at enhancing the planning and operation of distribution networks from the DSO’s perspective. The first approach focuses on the optimized allocation and sizing of DERs while ensuring recloser fuse coordination to preserve the original network protection scheme. The second approach handles the static network reconfiguration problem, incorporating the allocation and sizing of DERs and capacitors. The third approach extends this to dynamic network reconfiguration, considering DERs, capacitors, and electric vehicle charging stations. Finally, the fourth approach explores the dynamic network reconfiguration, capacitors allocation, and on-load tap changer adjustment, while accounting for stochastic customer-owned DERs. The main objectives are to minimize investment and operational costs, improve the system’s performance indicators–such as power losses and voltage deviation–and ensure the proper operation of the distribution system. Stochastic variations in DER generation, load profiles, and EV distribution throughout the day are modeled using the Monte Carlo Method. The multi-objective optimization problems are solved using the Non-dominated Sorting Genetic Algorithm II and the Multi-objective Cuckoo Search, with the final solution selected through the Fuzzy Decision-making Method. The results demonstrate significant improvements in the performance indicators of the distribution system, achieved while meeting all operational constraints |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-03-24T20:13:59Z 2025-03-24T20:13:59Z 2025-02-25 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://repositorio.ufes.br/handle/10/18687 |
| url |
http://repositorio.ufes.br/handle/10/18687 |
| dc.language.iso.fl_str_mv |
por eng |
| language |
por eng |
| dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
Text application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo BR Doutorado em Engenharia Elétrica Centro Tecnológico UFES Programa de Pós-Graduação em Engenharia Elétrica |
| publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo BR Doutorado em Engenharia Elétrica Centro Tecnológico UFES Programa de Pós-Graduação em Engenharia Elétrica |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) instname:Universidade Federal do Espírito Santo (UFES) instacron:UFES |
| instname_str |
Universidade Federal do Espírito Santo (UFES) |
| instacron_str |
UFES |
| institution |
UFES |
| reponame_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
| collection |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES) |
| repository.mail.fl_str_mv |
riufes@ufes.br |
| _version_ |
1834479094061858816 |