Combining heterogeneous data and deep learning models for skin cancer detection

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Pacheco, André Georghton Cardoso
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Espírito Santo
BR
Doutorado em Ciência da Computação
Centro Tecnológico
UFES
Programa de Pós-Graduação em Informática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufes.br/handle/10/14433
Resumo: Currently, Deep Neural Networks (DNN) are the most successful and common methodologies to tackle medical image analysis. Despite the success, applying Deep Learning for these types of problems involves several challenges such as the lack of large training datasets, data variance, and noise sensitivity. In this thesis, our main focus is on proposing solutions to assist Deep Learning models to deal with these issues when they are applied to medical (clinical) image problems, in particular for skin cancer detection. Basically, we work on two main topics: data classification using images and context meta-data and dynamic weighting for an ensemble of deep models. First, we propose two methods to combine images and meta-data; one method is based on features concatenation that uses a mechanism to balance the contribution of each source of data; the second method, named Meta-data Processing Block (MetaBlock), uses meta-data to support the classification by identifying the most relevant features extracted from the images. Next, we propose an approach, based on a Dirichlet distribution and Mahalanobis distance, to learn dynamic weights for an ensemble of deep models. The learned weights are used to reduce the impact of weak models on the aggregation operator and to online select models from the ensemble. All these methods are evaluated in well-known image classification datasets in different experiments. Results show that the proposed methods are competitive with other approaches that deal with the same problems. Lastly, we carry out a case study using a new skin lesion dataset – composed of clinical images collected from smartphones and patient demographics – collected in partnership with the Dermatological and Surgical Assistance Program of the Federal University of Espírito Santo. Results achieved using this dataset are comparable to other recent performance reported in the literature, which shows that the proposed algorithms are viable to deal with skin cancer detection.
id UFES_73abdbfabf9f7d4049afaf662d6308d2
oai_identifier_str oai:repositorio.ufes.br:10/14433
network_acronym_str UFES
network_name_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository_id_str
spelling Combining heterogeneous data and deep learning models for skin cancer detectionCombining heterogeneous data and deep learning models for skin cancer detectionDeep LearningData AggregationEnsemble of Deep ModelsConvolutional Neural NetworksImage ClassificationSkin Cancer Detectionsubject.br-rjbnCiência da ComputaçãoCurrently, Deep Neural Networks (DNN) are the most successful and common methodologies to tackle medical image analysis. Despite the success, applying Deep Learning for these types of problems involves several challenges such as the lack of large training datasets, data variance, and noise sensitivity. In this thesis, our main focus is on proposing solutions to assist Deep Learning models to deal with these issues when they are applied to medical (clinical) image problems, in particular for skin cancer detection. Basically, we work on two main topics: data classification using images and context meta-data and dynamic weighting for an ensemble of deep models. First, we propose two methods to combine images and meta-data; one method is based on features concatenation that uses a mechanism to balance the contribution of each source of data; the second method, named Meta-data Processing Block (MetaBlock), uses meta-data to support the classification by identifying the most relevant features extracted from the images. Next, we propose an approach, based on a Dirichlet distribution and Mahalanobis distance, to learn dynamic weights for an ensemble of deep models. The learned weights are used to reduce the impact of weak models on the aggregation operator and to online select models from the ensemble. All these methods are evaluated in well-known image classification datasets in different experiments. Results show that the proposed methods are competitive with other approaches that deal with the same problems. Lastly, we carry out a case study using a new skin lesion dataset – composed of clinical images collected from smartphones and patient demographics – collected in partnership with the Dermatological and Surgical Assistance Program of the Federal University of Espírito Santo. Results achieved using this dataset are comparable to other recent performance reported in the literature, which shows that the proposed algorithms are viable to deal with skin cancer detection.Atualmente, as Redes Neurais Profundas (RNP) são os modelos que apresentam os melhores resultados para lidar com a análise de imagens médicas. Apesar do sucesso, a aplicação de Aprendizado Profundo para esses tipos de problemas apresenta vários desafios, como a falta de grandes conjuntos de dados de treinamento, variação de dados e sensibilidade ao ruído. O foco principal deste trabalho é propor soluções para auxiliar os modelos de Aprendizado Profundo a lidar com esses desafios quando aplicados a problemas que lidam com imagens (clínicas) médicas, em particular a detecção de câncer de pele. De maneira geral, as propostas são feitas em dois tópicos principais: classificação de dados utilizando imagens e metadados do contexto e ponderação dinâmica para um conjunto de modelos profundos. Primeiro, foi proposto dois métodos para combinar imagens e metadados; um método é baseado na concatenação de atributos que utiliza um mecanismo para equilibrar a contribuição de cada fonte de dados; o segundo método, denominado Bloco de Processamento de Metadados (MetaBlock), utiliza os metadados para apoiar a classificação, identificando os atributos mais importantes extraídos das imagens. Em seguida, propomos uma abordagem, baseada na distribuição de Dirichlet e na distância de Mahalanobis, para aprender dinamicamente os pesos para um conjunto de modelos profundos. Esses pesos são utilizados para reduzir o impacto de modelos ruins no operador de agregação e para selecionar modelos do conjunto de maneira online. Todos os métodos propostos são avaliados em diferentes bases de dados de classificação considerando diferentes experimentos. Os resultados obtidos mostram que os métodos propostos são competitivos com outras abordagens que lidam com os mesmos problemas. Por fim, é realizado um estudo de caso utilizando uma nova base de dados de lesões de pele - composta por imagens clínicas coletadas via smartphones e informações clínicas dos pacientes - coletados em parceria com o Programa de Assistência Dermatológica e Cirúrgica (PAD) da Universidade Federal do Espírito Santo (UFES). O desempenho obtido para essa base de dados é comparável com outros resultados recentemente reportados na literatura, o que indica que os algoritmos propostos são viáveis para lidar com detecção de câncer de pele.Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade Federal do Espírito SantoBRDoutorado em Ciência da ComputaçãoCentro TecnológicoUFESPrograma de Pós-Graduação em InformáticaKrohling, Renato Antoniohttps://orcid.org/0000-0001-8861-4274http://lattes.cnpq.br/5300435085221378https://orcid.org/0000-0003-0117-9308http://lattes.cnpq.br/8898143425329967Mota, Vinícius Fernandes Soareshttps://orcid.org/0000-0002-8341-8183http://lattes.cnpq.br/9305955394665920Cavalieri, Daniel Cruzhttps://orcid.org/0000-0002-4916-1863http://lattes.cnpq.br/9583314331960942Papa, João Paulohttps://orcid.org/0000-0002-6494-7514http://lattes.cnpq.br/9039182932747194Santos, Celso Alberto Saibelhttps://orcid.org/0000000232875843http://lattes.cnpq.br/7614206164174151Pacheco, André Georghton Cardoso2024-05-30T00:49:10Z2024-05-30T00:49:10Z2020-11-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisTextapplication/pdfhttp://repositorio.ufes.br/handle/10/14433porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFES2025-05-19T11:12:32Zoai:repositorio.ufes.br:10/14433Repositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestriufes@ufes.bropendoar:21082025-05-19T11:12:32Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false
dc.title.none.fl_str_mv Combining heterogeneous data and deep learning models for skin cancer detection
Combining heterogeneous data and deep learning models for skin cancer detection
title Combining heterogeneous data and deep learning models for skin cancer detection
spellingShingle Combining heterogeneous data and deep learning models for skin cancer detection
Pacheco, André Georghton Cardoso
Deep Learning
Data Aggregation
Ensemble of Deep Models
Convolutional Neural Networks
Image Classification
Skin Cancer Detection
subject.br-rjbn
Ciência da Computação
title_short Combining heterogeneous data and deep learning models for skin cancer detection
title_full Combining heterogeneous data and deep learning models for skin cancer detection
title_fullStr Combining heterogeneous data and deep learning models for skin cancer detection
title_full_unstemmed Combining heterogeneous data and deep learning models for skin cancer detection
title_sort Combining heterogeneous data and deep learning models for skin cancer detection
author Pacheco, André Georghton Cardoso
author_facet Pacheco, André Georghton Cardoso
author_role author
dc.contributor.none.fl_str_mv Krohling, Renato Antonio
https://orcid.org/0000-0001-8861-4274
http://lattes.cnpq.br/5300435085221378
https://orcid.org/0000-0003-0117-9308
http://lattes.cnpq.br/8898143425329967
Mota, Vinícius Fernandes Soares
https://orcid.org/0000-0002-8341-8183
http://lattes.cnpq.br/9305955394665920
Cavalieri, Daniel Cruz
https://orcid.org/0000-0002-4916-1863
http://lattes.cnpq.br/9583314331960942
Papa, João Paulo
https://orcid.org/0000-0002-6494-7514
http://lattes.cnpq.br/9039182932747194
Santos, Celso Alberto Saibel
https://orcid.org/0000000232875843
http://lattes.cnpq.br/7614206164174151
dc.contributor.author.fl_str_mv Pacheco, André Georghton Cardoso
dc.subject.por.fl_str_mv Deep Learning
Data Aggregation
Ensemble of Deep Models
Convolutional Neural Networks
Image Classification
Skin Cancer Detection
subject.br-rjbn
Ciência da Computação
topic Deep Learning
Data Aggregation
Ensemble of Deep Models
Convolutional Neural Networks
Image Classification
Skin Cancer Detection
subject.br-rjbn
Ciência da Computação
description Currently, Deep Neural Networks (DNN) are the most successful and common methodologies to tackle medical image analysis. Despite the success, applying Deep Learning for these types of problems involves several challenges such as the lack of large training datasets, data variance, and noise sensitivity. In this thesis, our main focus is on proposing solutions to assist Deep Learning models to deal with these issues when they are applied to medical (clinical) image problems, in particular for skin cancer detection. Basically, we work on two main topics: data classification using images and context meta-data and dynamic weighting for an ensemble of deep models. First, we propose two methods to combine images and meta-data; one method is based on features concatenation that uses a mechanism to balance the contribution of each source of data; the second method, named Meta-data Processing Block (MetaBlock), uses meta-data to support the classification by identifying the most relevant features extracted from the images. Next, we propose an approach, based on a Dirichlet distribution and Mahalanobis distance, to learn dynamic weights for an ensemble of deep models. The learned weights are used to reduce the impact of weak models on the aggregation operator and to online select models from the ensemble. All these methods are evaluated in well-known image classification datasets in different experiments. Results show that the proposed methods are competitive with other approaches that deal with the same problems. Lastly, we carry out a case study using a new skin lesion dataset – composed of clinical images collected from smartphones and patient demographics – collected in partnership with the Dermatological and Surgical Assistance Program of the Federal University of Espírito Santo. Results achieved using this dataset are comparable to other recent performance reported in the literature, which shows that the proposed algorithms are viable to deal with skin cancer detection.
publishDate 2020
dc.date.none.fl_str_mv 2020-11-12
2024-05-30T00:49:10Z
2024-05-30T00:49:10Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufes.br/handle/10/14433
url http://repositorio.ufes.br/handle/10/14433
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv Text
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Espírito Santo
BR
Doutorado em Ciência da Computação
Centro Tecnológico
UFES
Programa de Pós-Graduação em Informática
publisher.none.fl_str_mv Universidade Federal do Espírito Santo
BR
Doutorado em Ciência da Computação
Centro Tecnológico
UFES
Programa de Pós-Graduação em Informática
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
instname:Universidade Federal do Espírito Santo (UFES)
instacron:UFES
instname_str Universidade Federal do Espírito Santo (UFES)
instacron_str UFES
institution UFES
reponame_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
collection Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)
repository.mail.fl_str_mv riufes@ufes.br
_version_ 1834479135614828544