Development of a Multisensorial System for Emotions Recognition
| Ano de defesa: | 2017 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal do Espírito Santo
BR Mestrado em Engenharia Elétrica Centro Tecnológico UFES Programa de Pós-Graduação em Engenharia Elétrica |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://repositorio.ufes.br/handle/10/9561 |
Resumo: | Automated reading and analysis of human emotion has the potential to be a powerful tool to develop a wide variety of applications, such as human-computer interaction systems, but, at the same time, this is a very difficult issue because the human communication is very complex. Humans employ multiple sensory systems in emotion recognition. At the same way, an emotionally intelligent machine requires multiples sensors to be able to create an affective interaction with users. Thus, this Master thesis proposes the development of a multisensorial system for automatic emotion recognition. The multisensorial system is composed of three sensors, which allowed exploring different emotional aspects, as the eye tracking, using the IR-PCR technique, helped conducting studies about visual social attention; the Kinect, in conjunction with the FACS-AU system technique, allowed developing a tool for facial expression recognition; and the thermal camera, using the FT-RoI technique, was employed for detecting facial thermal variation. When performing the multisensorial integration of the system, it was possible to obtain a more complete and varied analysis of the emotional aspects, allowing evaluate focal attention, valence comprehension, valence expressions, facial expression, valence recognition and arousal recognition. Experiments were performed with sixteen healthy adult volunteers and 105 healthy children volunteers and the results were the developed system, which was able to detect eye gaze, recognize facial expression and estimate the valence and arousal for emotion recognition, This system also presents the potential to analyzed emotions of people by facial features using contactless sensors in semi-structured environments, such as clinics, laboratories, or classrooms. This system also presents the potential to become an embedded tool in robots to endow these machines with an emotional intelligence for a more natural interaction with humans. Keywords: emotion recognition, eye tracking, facial expression, facial thermal variation, integration multisensorial |
| id |
UFES_7950e6b7955010101b6d00efa73d6a3d |
|---|---|
| oai_identifier_str |
oai:repositorio.ufes.br:10/9561 |
| network_acronym_str |
UFES |
| network_name_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
| repository_id_str |
|
| spelling |
Development of a Multisensorial System for Emotions RecognitionFacial thermal variationIntegration multisensorialEmotion recognitionEye trackingFacial expressionVariação térmica facialExpressão facialOlhos - MovimentosKinect (Controlador programável)Sistemas de computação interativosInteração homem-máquinaEletrônica Industrial, Sistemas e Controles Eletrônicos621.3Automated reading and analysis of human emotion has the potential to be a powerful tool to develop a wide variety of applications, such as human-computer interaction systems, but, at the same time, this is a very difficult issue because the human communication is very complex. Humans employ multiple sensory systems in emotion recognition. At the same way, an emotionally intelligent machine requires multiples sensors to be able to create an affective interaction with users. Thus, this Master thesis proposes the development of a multisensorial system for automatic emotion recognition. The multisensorial system is composed of three sensors, which allowed exploring different emotional aspects, as the eye tracking, using the IR-PCR technique, helped conducting studies about visual social attention; the Kinect, in conjunction with the FACS-AU system technique, allowed developing a tool for facial expression recognition; and the thermal camera, using the FT-RoI technique, was employed for detecting facial thermal variation. When performing the multisensorial integration of the system, it was possible to obtain a more complete and varied analysis of the emotional aspects, allowing evaluate focal attention, valence comprehension, valence expressions, facial expression, valence recognition and arousal recognition. Experiments were performed with sixteen healthy adult volunteers and 105 healthy children volunteers and the results were the developed system, which was able to detect eye gaze, recognize facial expression and estimate the valence and arousal for emotion recognition, This system also presents the potential to analyzed emotions of people by facial features using contactless sensors in semi-structured environments, such as clinics, laboratories, or classrooms. This system also presents the potential to become an embedded tool in robots to endow these machines with an emotional intelligence for a more natural interaction with humans. Keywords: emotion recognition, eye tracking, facial expression, facial thermal variation, integration multisensorialA leitura e análise automatizada da emoção humana tem potencial para ser uma ferramenta poderosa para desenvolver uma ampla variedade de aplicações, como sistemas de interação homem-computador, mas, ao mesmo tempo, é uma questão muito difícil porque a comunicação humana é muito complexa. Os seres humanos empregam múltiplos sistemas sensoriais no reconhecimento emocional. Assim, esta dissertação de mestrado propõe o desenvolvimento de um sistema multissensorial para reconhecimento automático de emoções. O sistema multisensorial é composto por três sensores, que permitiram a exploração de diferentes aspectos emocionais, o seguimento do olhar, utilizando a técnica IR-PCR, ajudou a realizar estudos sobre atenção social visual; O Kinect, em conjunto com a técnica do sistema FACS-AU, permitiu o desenvolvimento de uma ferramenta para o reconhecimento da expressão facial; E a câmera térmica, usando a técnica FT-RoI, foi empregada para detectar a variação térmica facial. Ao realizar a integração multissensorial do sistema, foi possível obter uma análise mais completa e variada dos aspectos emocionais, permitindo avaliar a atenção focal, a compreensão da valência, a expressão da valência, a expressão facial, o reconhecimento de valência e o reconhecimento de excitação.Experimentos foram realizados com dezesseis voluntários adultos saudáveis e 105 crianças saudáveis e os resultados foram o sistema desenvolvido, capaz de detectar o foco do olhar, reconhecer expressões faciais e estimar a valência e a excitação para o reconhecimento emocional.Este sistema também apresenta o potencial para analisar as emoções das pessoas por características faciais usando sensores sem contato em ambientes semi-estruturados, como clínicas, laboratórios ou salas de aula. Este sistema também apresenta o potencial de se tornar uma ferramenta incorporada em robôs para dotar essas máquinas de uma inteligência emocional para uma interação mais natural com os seres humanos.Universidade Federal do Espírito SantoBRMestrado em Engenharia ElétricaCentro TecnológicoUFESPrograma de Pós-Graduação em Engenharia ElétricaBastos Filho, Teodiano FreireBellon, Olga Regina PereiraCaldeira, Eliete Maria de OliveiraFlor, Hamilton Rivera2018-08-02T00:00:40Z2018-08-012018-08-02T00:00:40Z2017-03-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisTextapplication/pdfhttp://repositorio.ufes.br/handle/10/9561enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFES2024-12-09T22:14:15Zoai:repositorio.ufes.br:10/9561Repositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestriufes@ufes.bropendoar:21082024-12-09T22:14:15Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false |
| dc.title.none.fl_str_mv |
Development of a Multisensorial System for Emotions Recognition |
| title |
Development of a Multisensorial System for Emotions Recognition |
| spellingShingle |
Development of a Multisensorial System for Emotions Recognition Flor, Hamilton Rivera Facial thermal variation Integration multisensorial Emotion recognition Eye tracking Facial expression Variação térmica facial Expressão facial Olhos - Movimentos Kinect (Controlador programável) Sistemas de computação interativos Interação homem-máquina Eletrônica Industrial, Sistemas e Controles Eletrônicos 621.3 |
| title_short |
Development of a Multisensorial System for Emotions Recognition |
| title_full |
Development of a Multisensorial System for Emotions Recognition |
| title_fullStr |
Development of a Multisensorial System for Emotions Recognition |
| title_full_unstemmed |
Development of a Multisensorial System for Emotions Recognition |
| title_sort |
Development of a Multisensorial System for Emotions Recognition |
| author |
Flor, Hamilton Rivera |
| author_facet |
Flor, Hamilton Rivera |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Bastos Filho, Teodiano Freire Bellon, Olga Regina Pereira Caldeira, Eliete Maria de Oliveira |
| dc.contributor.author.fl_str_mv |
Flor, Hamilton Rivera |
| dc.subject.por.fl_str_mv |
Facial thermal variation Integration multisensorial Emotion recognition Eye tracking Facial expression Variação térmica facial Expressão facial Olhos - Movimentos Kinect (Controlador programável) Sistemas de computação interativos Interação homem-máquina Eletrônica Industrial, Sistemas e Controles Eletrônicos 621.3 |
| topic |
Facial thermal variation Integration multisensorial Emotion recognition Eye tracking Facial expression Variação térmica facial Expressão facial Olhos - Movimentos Kinect (Controlador programável) Sistemas de computação interativos Interação homem-máquina Eletrônica Industrial, Sistemas e Controles Eletrônicos 621.3 |
| description |
Automated reading and analysis of human emotion has the potential to be a powerful tool to develop a wide variety of applications, such as human-computer interaction systems, but, at the same time, this is a very difficult issue because the human communication is very complex. Humans employ multiple sensory systems in emotion recognition. At the same way, an emotionally intelligent machine requires multiples sensors to be able to create an affective interaction with users. Thus, this Master thesis proposes the development of a multisensorial system for automatic emotion recognition. The multisensorial system is composed of three sensors, which allowed exploring different emotional aspects, as the eye tracking, using the IR-PCR technique, helped conducting studies about visual social attention; the Kinect, in conjunction with the FACS-AU system technique, allowed developing a tool for facial expression recognition; and the thermal camera, using the FT-RoI technique, was employed for detecting facial thermal variation. When performing the multisensorial integration of the system, it was possible to obtain a more complete and varied analysis of the emotional aspects, allowing evaluate focal attention, valence comprehension, valence expressions, facial expression, valence recognition and arousal recognition. Experiments were performed with sixteen healthy adult volunteers and 105 healthy children volunteers and the results were the developed system, which was able to detect eye gaze, recognize facial expression and estimate the valence and arousal for emotion recognition, This system also presents the potential to analyzed emotions of people by facial features using contactless sensors in semi-structured environments, such as clinics, laboratories, or classrooms. This system also presents the potential to become an embedded tool in robots to endow these machines with an emotional intelligence for a more natural interaction with humans. Keywords: emotion recognition, eye tracking, facial expression, facial thermal variation, integration multisensorial |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-03-17 2018-08-02T00:00:40Z 2018-08-01 2018-08-02T00:00:40Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://repositorio.ufes.br/handle/10/9561 |
| url |
http://repositorio.ufes.br/handle/10/9561 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
Text application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo BR Mestrado em Engenharia Elétrica Centro Tecnológico UFES Programa de Pós-Graduação em Engenharia Elétrica |
| publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo BR Mestrado em Engenharia Elétrica Centro Tecnológico UFES Programa de Pós-Graduação em Engenharia Elétrica |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) instname:Universidade Federal do Espírito Santo (UFES) instacron:UFES |
| instname_str |
Universidade Federal do Espírito Santo (UFES) |
| instacron_str |
UFES |
| institution |
UFES |
| reponame_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
| collection |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES) |
| repository.mail.fl_str_mv |
riufes@ufes.br |
| _version_ |
1834479108861460480 |