Adaptive x-ray tomography image reconstruction

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Wirtti, Tiago Tadeu
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Espírito Santo
BR
Doutorado em Engenharia Elétrica
Centro Tecnológico
UFES
Programa de Pós-Graduação em Engenharia Elétrica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufes.br/handle/10/13357
Resumo: In X-ray tomography image reconstruction, one of the most successful approaches involves a statistical modeling with l2 norm function for fidelity regularized by a functional with lp norm, 1 < p < 2, with p ∈ R. Among them stands out, for its results and computational performance, a technique that reconstructs an image by alternating minimization for (i) solving the l2 norm fidelity term by Simultaneous Algebraic Reconstruction Technique (SART) and (ii) constraining the regularization term, defined by a Discrete Gradient Transform (DGT) sparse transformation, using Total Variation (TV) minimization. This work proposes an improvement to the reconstruction process by adding a Bilateral Edge preserving (BEP) regularization term to the objective function, resulting in a three-step method. BEP is a noise reduction framework and has the purpose of adaptively eliminating noise in the initial phase of reconstruction process. BEP improves optimization of the f idelity term and, as a consequence, improves the result of DGT minimization by total variation. Regular dosage experiments shown favorable results compared to classical methods, such as Filtred Backprojection (FBP), and more modern ones, such as l2 norm optimization by using SART, and the l2 norm SART solution regularized by l1 norm TV optimization of DGT (SART+DGT), especially with the Structural Similarity Index Measurement (SSIM) metric. Although not so prominent in the case of regular dosing reconstruction, Peak Signal-to-noise Ratio (PSNR) results are consistent with those of SSIM. For low dosage, the quality of the reconstruction worsens for all methods, but is markedly lower for the FBP and SART methods. In this context of limited number of projections (low dosage), the reconstructions with the method here proposed presents better defined edges, in addition to better contrast and less artifacts in surfaces of regular intensity (low intensity variation). These results are generally obtained with a smaller number of steps compared to the other iterative methods implemented in this Thesis. However, this behavior (of the proposed method) depends on the parameterization of the lp norm, 1 ≤ p ≤ 2, used in the BEP stage. It is experimentally shown that by varying the norm during the reconstruction process it is possible to keep the proposed method stable over a sufficiently large number of iteractions. It is also graphically shown that the method converge, meaning that the SSIM and PSNR metrics can be continuously improved by a sufficiently large number of iteractions. For reconstructions with a limited number of projections (low-dose reconstruction), the proposed method can achieve higher PSNR and SSIM results because it can better control the noise in the initial processing phase.
id UFES_9abba9cb491986aa044af06366a26d53
oai_identifier_str oai:repositorio.ufes.br:10/13357
network_acronym_str UFES
network_name_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository_id_str
spelling Adaptive x-ray tomography image reconstructiontitle.alternativeSignal processingBiomedical engineeringX-ray computed tomographyImage reconstructionOptimization techniques,Bilateral edge preservationProcessamento de sinalEngenharia biomédicaTomografia computadorizada de raios-XReconstrução de imagemTécnicas de otimizaçãoPreservação bilateral de bordassubject.br-rjbnEngenharia ElétricaIn X-ray tomography image reconstruction, one of the most successful approaches involves a statistical modeling with l2 norm function for fidelity regularized by a functional with lp norm, 1 < p < 2, with p ∈ R. Among them stands out, for its results and computational performance, a technique that reconstructs an image by alternating minimization for (i) solving the l2 norm fidelity term by Simultaneous Algebraic Reconstruction Technique (SART) and (ii) constraining the regularization term, defined by a Discrete Gradient Transform (DGT) sparse transformation, using Total Variation (TV) minimization. This work proposes an improvement to the reconstruction process by adding a Bilateral Edge preserving (BEP) regularization term to the objective function, resulting in a three-step method. BEP is a noise reduction framework and has the purpose of adaptively eliminating noise in the initial phase of reconstruction process. BEP improves optimization of the f idelity term and, as a consequence, improves the result of DGT minimization by total variation. Regular dosage experiments shown favorable results compared to classical methods, such as Filtred Backprojection (FBP), and more modern ones, such as l2 norm optimization by using SART, and the l2 norm SART solution regularized by l1 norm TV optimization of DGT (SART+DGT), especially with the Structural Similarity Index Measurement (SSIM) metric. Although not so prominent in the case of regular dosing reconstruction, Peak Signal-to-noise Ratio (PSNR) results are consistent with those of SSIM. For low dosage, the quality of the reconstruction worsens for all methods, but is markedly lower for the FBP and SART methods. In this context of limited number of projections (low dosage), the reconstructions with the method here proposed presents better defined edges, in addition to better contrast and less artifacts in surfaces of regular intensity (low intensity variation). These results are generally obtained with a smaller number of steps compared to the other iterative methods implemented in this Thesis. However, this behavior (of the proposed method) depends on the parameterization of the lp norm, 1 ≤ p ≤ 2, used in the BEP stage. It is experimentally shown that by varying the norm during the reconstruction process it is possible to keep the proposed method stable over a sufficiently large number of iteractions. It is also graphically shown that the method converge, meaning that the SSIM and PSNR metrics can be continuously improved by a sufficiently large number of iteractions. For reconstructions with a limited number of projections (low-dose reconstruction), the proposed method can achieve higher PSNR and SSIM results because it can better control the noise in the initial processing phase.Em reconstrução de imagem de tomografica de raios-X, uma das abordagens mais bem sucedidas envolve a modelagem estatística de uma função fidelidade de norma l2 combinada com algum tipo de regularização de norma lp, 1 < p < 2, onde p ∈ R. Entre elas, se destaca por seus resultados e desempenho computacional uma técnica que envolve minimização alternada entre (i) a solução da função fidelidade de norma l2 pela técnica de reconstrução algébrica simultânea (SART, simultaneous algebraic reconstruction technique) e (ii) a solução de um termo regularizador que usa transformação gradiente discreta (DGT, discrete gradient transform) minimizada por variação total (TV, total variation). O presente trabalho propõe a melhoria desse processo de reconstrução através da adição à função objetivo de um termo baseado em preservação bilateral de bordas (BEP, bilateral edge preservation), resultando em um método de três etapas. BEP é uma metodologia de redução de ruído e tem o propósito de eliminar de forma adaptativa o ruído na fase inicial do processo de reconstrução. Como consequência, a adição de BEP melhora a otimização do termo de fidelidade e o resultado da minimização da DGT por variação total. Experimentos com dosagem regular mostram resultados favoráveis em comparação com métodos clássicos, tais como Retroprojeção com Filtragem (Filtered Backprojection, ou FBP) e outros mais modernos, tais como solução por otimização de norma l2 por SART, especialmente para a métrica SSIM. Embora não sejam proemintes no caso de reconstrução com dosagem regular, os resultados com PSNR são coerentes com os do SSIM. Para baixa dosagem, a qualidade da rescontrução piora para todos os métodos, mas é notadamente inferior para FBP e SART. Neste contexto de número limitado de projeções (baixa dosagem), o método proposto apresenta reconstruções com bordas mais bem definidas, além de melhor constraste e menos artefatos em superfícies regulares (pouca variação de intensidade). Esses resultados são obtidos geralmente com um menor número de iterações em comparação com os demais métodos implementados nesta Tese. É experimentalmente mostrado que variando a norma no decorrer do processo de reconstrução é possível manter o método proposto estável ao longo de um número suficientemente grande de iterações. Para reconstruções com um número limitado de projeções (reconstrução de baixa dosagem), o método proposto pode alcançar resultados consideráveis em termos de PSNR e SSIM devido à possibilidade de controlar melhor o ruído na fase inicial do processo de reconstrução.Universidade Federal do Espírito SantoBRDoutorado em Engenharia ElétricaCentro TecnológicoUFESPrograma de Pós-Graduação em Engenharia ElétricaSalles, Evandro Ottoni Teatinihttps://orcid.org/0000000282873045http://lattes.cnpq.br/5893731382102675https://orcid.org/ 0000-0003-0731-6326 http://lattes.cnpq.br/3414259707581590Filho, Mario Sarcinellihttps://orcid.org/0000000276968996http://lattes.cnpq.br/3459331011913021Andreao, Rodrigo Varejaohttps://orcid.org/0000000268005700http://lattes.cnpq.br/5589662366089944Pinto, Luiz Albertohttps://orcid.org/http://lattes.cnpq.br/Kim, Hae YongWirtti, Tiago Tadeu2024-05-29T22:11:01Z2024-05-29T22:11:01Z2019-08-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisTextapplication/pdfhttp://repositorio.ufes.br/handle/10/13357porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFES2024-08-06T10:54:17Zoai:repositorio.ufes.br:10/13357Repositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestriufes@ufes.bropendoar:21082024-08-06T10:54:17Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false
dc.title.none.fl_str_mv Adaptive x-ray tomography image reconstruction
title.alternative
title Adaptive x-ray tomography image reconstruction
spellingShingle Adaptive x-ray tomography image reconstruction
Wirtti, Tiago Tadeu
Signal processing
Biomedical engineering
X-ray computed tomography
Image reconstruction
Optimization techniques,
Bilateral edge preservation
Processamento de sinal
Engenharia biomédica
Tomografia computadorizada de raios-X
Reconstrução de imagem
Técnicas de otimização
Preservação bilateral de bordas
subject.br-rjbn
Engenharia Elétrica
title_short Adaptive x-ray tomography image reconstruction
title_full Adaptive x-ray tomography image reconstruction
title_fullStr Adaptive x-ray tomography image reconstruction
title_full_unstemmed Adaptive x-ray tomography image reconstruction
title_sort Adaptive x-ray tomography image reconstruction
author Wirtti, Tiago Tadeu
author_facet Wirtti, Tiago Tadeu
author_role author
dc.contributor.none.fl_str_mv Salles, Evandro Ottoni Teatini
https://orcid.org/0000000282873045
http://lattes.cnpq.br/5893731382102675
https://orcid.org/ 0000-0003-0731-6326
http://lattes.cnpq.br/3414259707581590
Filho, Mario Sarcinelli
https://orcid.org/0000000276968996
http://lattes.cnpq.br/3459331011913021
Andreao, Rodrigo Varejao
https://orcid.org/0000000268005700
http://lattes.cnpq.br/5589662366089944
Pinto, Luiz Alberto
https://orcid.org/
http://lattes.cnpq.br/
Kim, Hae Yong
dc.contributor.author.fl_str_mv Wirtti, Tiago Tadeu
dc.subject.por.fl_str_mv Signal processing
Biomedical engineering
X-ray computed tomography
Image reconstruction
Optimization techniques,
Bilateral edge preservation
Processamento de sinal
Engenharia biomédica
Tomografia computadorizada de raios-X
Reconstrução de imagem
Técnicas de otimização
Preservação bilateral de bordas
subject.br-rjbn
Engenharia Elétrica
topic Signal processing
Biomedical engineering
X-ray computed tomography
Image reconstruction
Optimization techniques,
Bilateral edge preservation
Processamento de sinal
Engenharia biomédica
Tomografia computadorizada de raios-X
Reconstrução de imagem
Técnicas de otimização
Preservação bilateral de bordas
subject.br-rjbn
Engenharia Elétrica
description In X-ray tomography image reconstruction, one of the most successful approaches involves a statistical modeling with l2 norm function for fidelity regularized by a functional with lp norm, 1 < p < 2, with p ∈ R. Among them stands out, for its results and computational performance, a technique that reconstructs an image by alternating minimization for (i) solving the l2 norm fidelity term by Simultaneous Algebraic Reconstruction Technique (SART) and (ii) constraining the regularization term, defined by a Discrete Gradient Transform (DGT) sparse transformation, using Total Variation (TV) minimization. This work proposes an improvement to the reconstruction process by adding a Bilateral Edge preserving (BEP) regularization term to the objective function, resulting in a three-step method. BEP is a noise reduction framework and has the purpose of adaptively eliminating noise in the initial phase of reconstruction process. BEP improves optimization of the f idelity term and, as a consequence, improves the result of DGT minimization by total variation. Regular dosage experiments shown favorable results compared to classical methods, such as Filtred Backprojection (FBP), and more modern ones, such as l2 norm optimization by using SART, and the l2 norm SART solution regularized by l1 norm TV optimization of DGT (SART+DGT), especially with the Structural Similarity Index Measurement (SSIM) metric. Although not so prominent in the case of regular dosing reconstruction, Peak Signal-to-noise Ratio (PSNR) results are consistent with those of SSIM. For low dosage, the quality of the reconstruction worsens for all methods, but is markedly lower for the FBP and SART methods. In this context of limited number of projections (low dosage), the reconstructions with the method here proposed presents better defined edges, in addition to better contrast and less artifacts in surfaces of regular intensity (low intensity variation). These results are generally obtained with a smaller number of steps compared to the other iterative methods implemented in this Thesis. However, this behavior (of the proposed method) depends on the parameterization of the lp norm, 1 ≤ p ≤ 2, used in the BEP stage. It is experimentally shown that by varying the norm during the reconstruction process it is possible to keep the proposed method stable over a sufficiently large number of iteractions. It is also graphically shown that the method converge, meaning that the SSIM and PSNR metrics can be continuously improved by a sufficiently large number of iteractions. For reconstructions with a limited number of projections (low-dose reconstruction), the proposed method can achieve higher PSNR and SSIM results because it can better control the noise in the initial processing phase.
publishDate 2019
dc.date.none.fl_str_mv 2019-08-08
2024-05-29T22:11:01Z
2024-05-29T22:11:01Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufes.br/handle/10/13357
url http://repositorio.ufes.br/handle/10/13357
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv Text
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Espírito Santo
BR
Doutorado em Engenharia Elétrica
Centro Tecnológico
UFES
Programa de Pós-Graduação em Engenharia Elétrica
publisher.none.fl_str_mv Universidade Federal do Espírito Santo
BR
Doutorado em Engenharia Elétrica
Centro Tecnológico
UFES
Programa de Pós-Graduação em Engenharia Elétrica
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
instname:Universidade Federal do Espírito Santo (UFES)
instacron:UFES
instname_str Universidade Federal do Espírito Santo (UFES)
instacron_str UFES
institution UFES
reponame_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
collection Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)
repository.mail.fl_str_mv riufes@ufes.br
_version_ 1834479109604900864