Análise de dispersão em fibras PCF com o método de elementos finitos

Detalhes bibliográficos
Ano de defesa: 2005
Autor(a) principal: Ramos, Breno Guimarães
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Espírito Santo
BR
Mestrado em Engenharia Elétrica
Centro Tecnológico
UFES
Programa de Pós-Graduação em Engenharia Elétrica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufes.br/handle/10/4035
Resumo: In the present work, the full vectorial, total anisotropic, Finite Element Method was implemented, using second order nodal base functions for the electric field longitudinal component discretization, and Nedelec base functions, quadratic normal and linear tangencial (QNLT), for the discretization of the magnetic field transversal component, applying triangular elements in the domain of solution. Through this implementation, it was studied several configurations of Photonic Cristal Fibers (PCF), making changes in the diameter of the holes and in the distance between then, also called pitch. The intention was to show how feasible and practical is the control of the ultraflattened dispersion profile for this new model of optical fiber, as was reported in recent works. The calculated dispersion results shown that is possible to get dispersion profile completely flat in a range of wavelength of 200 nm, and with the possibility to add offsets in this profiles, making it negative (for applications related to dispersion compensation), or yet, making it flat in a region as close as possible to zero, what is very useful for WDM multiplexing systems. In addition to the dispersion evaluation, the method developed also allows to calculate the effective modal area and also features a graphical presentation of the electric field distribution, or the magnetic field distribution, of the guided modes in the fiber. Concerning the tailoring of the dispersion curve, applying finite element simulation, it was validated the use of empiric equations for dispersion computations from scaling operations in the structure of PCF fibers. These equations can simplify even more the procedure of dispersion tailoring, because the number o simulations by finite element method is reduced considerably. It was also important to analyze the behavior of the propagating wave in the fiber’s interior. For this, it was implemented the Beam Propagation Method (BPM) using two different approaches. Initially, it was applied Crank-Nicholson method, which didn’t show good results because it was not possible to stabilize the propagation process. As a second option, the Newmark method was used, but it was only possible to make the propagation process stable with a simulation step which had the same order of magnitude of the wavelength applied. Thus, unfortunately it was not possible to observe any phenomena of interest during the guiding process.
id UFES_a5bc9a77ab665e41393de73e9dc3e25d
oai_identifier_str oai:repositorio.ufes.br:10/4035
network_acronym_str UFES
network_name_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository_id_str
spelling Análise de dispersão em fibras PCF com o método de elementos finitosFinite element methodOptical fibersDispersalElectromagnetic waves - TransmissionElectromagnetismMétodo dos elementos finitosFibras óticasDispersãoOndas eletromagnéticas – Transmissão EletromagnetismoEngenharia Elétrica621.3In the present work, the full vectorial, total anisotropic, Finite Element Method was implemented, using second order nodal base functions for the electric field longitudinal component discretization, and Nedelec base functions, quadratic normal and linear tangencial (QNLT), for the discretization of the magnetic field transversal component, applying triangular elements in the domain of solution. Through this implementation, it was studied several configurations of Photonic Cristal Fibers (PCF), making changes in the diameter of the holes and in the distance between then, also called pitch. The intention was to show how feasible and practical is the control of the ultraflattened dispersion profile for this new model of optical fiber, as was reported in recent works. The calculated dispersion results shown that is possible to get dispersion profile completely flat in a range of wavelength of 200 nm, and with the possibility to add offsets in this profiles, making it negative (for applications related to dispersion compensation), or yet, making it flat in a region as close as possible to zero, what is very useful for WDM multiplexing systems. In addition to the dispersion evaluation, the method developed also allows to calculate the effective modal area and also features a graphical presentation of the electric field distribution, or the magnetic field distribution, of the guided modes in the fiber. Concerning the tailoring of the dispersion curve, applying finite element simulation, it was validated the use of empiric equations for dispersion computations from scaling operations in the structure of PCF fibers. These equations can simplify even more the procedure of dispersion tailoring, because the number o simulations by finite element method is reduced considerably. It was also important to analyze the behavior of the propagating wave in the fiber’s interior. For this, it was implemented the Beam Propagation Method (BPM) using two different approaches. Initially, it was applied Crank-Nicholson method, which didn’t show good results because it was not possible to stabilize the propagation process. As a second option, the Newmark method was used, but it was only possible to make the propagation process stable with a simulation step which had the same order of magnitude of the wavelength applied. Thus, unfortunately it was not possible to observe any phenomena of interest during the guiding process.Neste trabalho, foi efetuada a implementação do método dos elementos finitos, vetorial completo, com anisotropia total, utilizando funções de base nodais de segunda ordem para discretizar a componente longitudinal do campo elétrico, funções de base de Nedelec quadrática normal e linear tangencial (QNLT), para discretizar a componente transversal do campo magnético,e elementos triangulares. Através desta implementação, efetuou-se a análise do comportamento da dispersão em fibras PCF (Photonic Cristal Fibers) para várias configurações de diâmetro dos buracos e do afastamento entre eles (pitch). O objetivo foi comprovar a praticidade de ajuste de perfis de dispersão ultra-aplainado nestas fibras, fato relatado em trabalhos recentes. Os resultados de dispersão encontrados demonstraram a possibilidade de se obter perfis planos num intervalo de comprimento de onda de até 200 nm, com opção de se ajustar a faixa plana da curva para um valor negativo (aplicação para compensação de dispersão), ou ainda para dispersão zero (aplicação em sistemasWDM). Além do cálculo da dispersão, o método desenvolvido também permite calcular a área efetiva do modo e ainda apresenta de forma gráfica a distribuição do campo elétrico, ou do campo magnético, dos modos guiados na fibra. Ainda no aspecto de ajuste de curva de dispersão, pela simulação via elementos finitos foi demonstrada a validade de equações empíricas para o cálculo da dispersão a partir de operações de escalamento na estrutura de uma fibra PCF. Estas equações podem simplificar ainda mais o procedimento de ajuste de dispersão, pois diminuem o número de simulações necessárias pelo método dos elementos finitos. Para visualizar o comportamento da onda propagante no interior da fibra, foi implementado o método BPM (Beam Propagation Method) através de duas técnicas distintas. Primeiramente com o método de Cranck-Nicholson, com o qual não foi possível estabilizar o processo de propagação, e em seguida com o método de Newmark, com o qual apenas foi possível estabilizar o cálculo da propagação fazendo o valor do passo de avanço no guia da mesma ordem de grandeza que o comprimento de onda propagado. Desta forma, não foi possível observar fenômenos de interesse durante o processo de guiamento.Universidade Federal do Espírito SantoBRMestrado em Engenharia ElétricaCentro TecnológicoUFESPrograma de Pós-Graduação em Engenharia ElétricaFrasson, Antonio Manoel FerreiraCalmon, Luiz de CalazansFigueroa, Hugo Enrique HernandezRamos, Breno Guimarães2016-08-29T15:32:23Z2016-07-112016-08-29T15:32:23Z2005-06-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisTextapplication/pdfhttp://repositorio.ufes.br/handle/10/4035porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFES2024-12-09T22:14:13Zoai:repositorio.ufes.br:10/4035Repositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestriufes@ufes.bropendoar:21082024-12-09T22:14:13Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false
dc.title.none.fl_str_mv Análise de dispersão em fibras PCF com o método de elementos finitos
title Análise de dispersão em fibras PCF com o método de elementos finitos
spellingShingle Análise de dispersão em fibras PCF com o método de elementos finitos
Ramos, Breno Guimarães
Finite element method
Optical fibers
Dispersal
Electromagnetic waves - Transmission
Electromagnetism
Método dos elementos finitos
Fibras óticas
Dispersão
Ondas eletromagnéticas – Transmissão Eletromagnetismo
Engenharia Elétrica
621.3
title_short Análise de dispersão em fibras PCF com o método de elementos finitos
title_full Análise de dispersão em fibras PCF com o método de elementos finitos
title_fullStr Análise de dispersão em fibras PCF com o método de elementos finitos
title_full_unstemmed Análise de dispersão em fibras PCF com o método de elementos finitos
title_sort Análise de dispersão em fibras PCF com o método de elementos finitos
author Ramos, Breno Guimarães
author_facet Ramos, Breno Guimarães
author_role author
dc.contributor.none.fl_str_mv Frasson, Antonio Manoel Ferreira
Calmon, Luiz de Calazans
Figueroa, Hugo Enrique Hernandez
dc.contributor.author.fl_str_mv Ramos, Breno Guimarães
dc.subject.por.fl_str_mv Finite element method
Optical fibers
Dispersal
Electromagnetic waves - Transmission
Electromagnetism
Método dos elementos finitos
Fibras óticas
Dispersão
Ondas eletromagnéticas – Transmissão Eletromagnetismo
Engenharia Elétrica
621.3
topic Finite element method
Optical fibers
Dispersal
Electromagnetic waves - Transmission
Electromagnetism
Método dos elementos finitos
Fibras óticas
Dispersão
Ondas eletromagnéticas – Transmissão Eletromagnetismo
Engenharia Elétrica
621.3
description In the present work, the full vectorial, total anisotropic, Finite Element Method was implemented, using second order nodal base functions for the electric field longitudinal component discretization, and Nedelec base functions, quadratic normal and linear tangencial (QNLT), for the discretization of the magnetic field transversal component, applying triangular elements in the domain of solution. Through this implementation, it was studied several configurations of Photonic Cristal Fibers (PCF), making changes in the diameter of the holes and in the distance between then, also called pitch. The intention was to show how feasible and practical is the control of the ultraflattened dispersion profile for this new model of optical fiber, as was reported in recent works. The calculated dispersion results shown that is possible to get dispersion profile completely flat in a range of wavelength of 200 nm, and with the possibility to add offsets in this profiles, making it negative (for applications related to dispersion compensation), or yet, making it flat in a region as close as possible to zero, what is very useful for WDM multiplexing systems. In addition to the dispersion evaluation, the method developed also allows to calculate the effective modal area and also features a graphical presentation of the electric field distribution, or the magnetic field distribution, of the guided modes in the fiber. Concerning the tailoring of the dispersion curve, applying finite element simulation, it was validated the use of empiric equations for dispersion computations from scaling operations in the structure of PCF fibers. These equations can simplify even more the procedure of dispersion tailoring, because the number o simulations by finite element method is reduced considerably. It was also important to analyze the behavior of the propagating wave in the fiber’s interior. For this, it was implemented the Beam Propagation Method (BPM) using two different approaches. Initially, it was applied Crank-Nicholson method, which didn’t show good results because it was not possible to stabilize the propagation process. As a second option, the Newmark method was used, but it was only possible to make the propagation process stable with a simulation step which had the same order of magnitude of the wavelength applied. Thus, unfortunately it was not possible to observe any phenomena of interest during the guiding process.
publishDate 2005
dc.date.none.fl_str_mv 2005-06-29
2016-08-29T15:32:23Z
2016-07-11
2016-08-29T15:32:23Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufes.br/handle/10/4035
url http://repositorio.ufes.br/handle/10/4035
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv Text
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Espírito Santo
BR
Mestrado em Engenharia Elétrica
Centro Tecnológico
UFES
Programa de Pós-Graduação em Engenharia Elétrica
publisher.none.fl_str_mv Universidade Federal do Espírito Santo
BR
Mestrado em Engenharia Elétrica
Centro Tecnológico
UFES
Programa de Pós-Graduação em Engenharia Elétrica
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
instname:Universidade Federal do Espírito Santo (UFES)
instacron:UFES
instname_str Universidade Federal do Espírito Santo (UFES)
instacron_str UFES
institution UFES
reponame_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
collection Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)
repository.mail.fl_str_mv riufes@ufes.br
_version_ 1834479155737001984