Detecção de transtorno mental via EEG, microestados e redes neurais de grafos
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | , |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal do Espírito Santo
Mestrado em Engenharia Elétrica |
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Elétrica
|
| Departamento: |
Centro Tecnológico
|
| País: |
BR
|
| Palavras-chave em Português: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | http://repositorio.ufes.br/handle/10/20640 |
Resumo: | Electroencephalogram (EEG) is a non-invasive and cost-effective technique widely used to study brain activity and diagnose neurological disorders. However, visual analysis of EEG signals is complex and requires expertise, highlighting the need for automated diagnostic support systems. In this context, this study proposes a graph-based neural network model for detecting mental disorders using EEG signals, leveraging microstate analysis. The proposed model integrates graph neural networks (GNNs) with microstate analysis, which captures transient and stable patterns of brain activity. The TUH Abnormal EEG Corpus (TUAB) dataset, containing normal and abnormal EEG signals, was used. The process included the extraction of microstates, the construction of graphs based on Spearman correlation between EEG channels, the extraction of features from EEG signals, and the application of Principal Component Analysis (PCA) to reduce the dimensionality of these features. Three GNNs were trained, each associated with signals from each microstate, and their outputs were combined using an ensemble technique. The final model achieved an accuracy of 97.46% on the test set, outperforming existing results of methods in the literature. The results highlight the effectiveness of the proposed approach, demonstrating the potential of GNNs and microstate analysis for detecting mental disorders from EEG signals |
| id |
UFES_b59da6f315bb1a09441c866145d082b4 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufes.br:10/20640 |
| network_acronym_str |
UFES |
| network_name_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
| repository_id_str |
|
| spelling |
Ciarelli, Patrick Marques https://orcid.org/0000-0003-3177-4028http://lattes.cnpq.br/1267950518719423Candeia, Daniel Ribeirohttps://orcid.org/0009-0001-4427-7496http://lattes.cnpq.br/2696632870728316Côco, Klaus Fabian https://orcid.org/0000-0001-7793-0693http://lattes.cnpq.br/1374499533178055Tello, Richard Junior Manuel Godinez https://orcid.org/0000-0003-1428-0990http://lattes.cnpq.br/39662305697449182025-11-19T17:39:41Z2025-11-19T17:39:41Z2025-05-27Electroencephalogram (EEG) is a non-invasive and cost-effective technique widely used to study brain activity and diagnose neurological disorders. However, visual analysis of EEG signals is complex and requires expertise, highlighting the need for automated diagnostic support systems. In this context, this study proposes a graph-based neural network model for detecting mental disorders using EEG signals, leveraging microstate analysis. The proposed model integrates graph neural networks (GNNs) with microstate analysis, which captures transient and stable patterns of brain activity. The TUH Abnormal EEG Corpus (TUAB) dataset, containing normal and abnormal EEG signals, was used. The process included the extraction of microstates, the construction of graphs based on Spearman correlation between EEG channels, the extraction of features from EEG signals, and the application of Principal Component Analysis (PCA) to reduce the dimensionality of these features. Three GNNs were trained, each associated with signals from each microstate, and their outputs were combined using an ensemble technique. The final model achieved an accuracy of 97.46% on the test set, outperforming existing results of methods in the literature. The results highlight the effectiveness of the proposed approach, demonstrating the potential of GNNs and microstate analysis for detecting mental disorders from EEG signalsO eletroencefalograma (EEG) é uma técnica não invasiva e de baixo custo, amplamente utilizada para o estudo da atividade cerebral e diagnóstico de doenças neurológicas. No entanto, a análise visual de sinais de EEG é complexa e demanda expertise, o que justifica a necessidade de sistemas automatizados para auxiliar no diagnóstico. Neste contexto, o presente trabalho propõe um modelo de rede neural baseado em grafos para a detecção de transtornos mentais a partir de sinais de EEG, utilizando a análise de microestados. O modelo proposto combina redes neurais de grafos (GNN) com a análise de microestados, que representam padrões transitórios e estáveis da atividade cerebral. A base de dados utilizada foi a TUH Abnormal EEG Corpus (TUAB), contendo sinais de EEG normais e anormais. O processo incluiu a extração de microestados, a criação de grafos a partir da correlação de Spearman entre os canais de EEG, a extração de características dos sinais de EEG e a aplicação da Análise de Componentes Principais (PCA) para reduzir a dimensionalidade dessas características. Três redes neurais de grafos foram treinadas, cada uma associada a sinais de cada microestado, e os resultados foram combinados por meio de uma técnica de ensemble. O modelo final alcançou uma acurácia de 97,46% no conjunto de testes, superando os resultados de outros métodos existentes na literatura. Os resultados demonstram a eficácia da abordagem proposta, destacando o potencial das GNN e da análise de microestados para a detecção de transtornos mentais a partir de sinais de EEGCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Texthttp://repositorio.ufes.br/handle/10/20640porptUniversidade Federal do Espírito SantoMestrado em Engenharia ElétricaPrograma de Pós-Graduação em Engenharia ElétricaUFESBRCentro Tecnológicohttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessEngenharia ElétricaRede Neural de GrafosMicroestados de EEGGrafosEletroencefalogramaTranstornos MentaisGraph Neural NetworkEEG MicrostatesGraphsElectroencephalogramMental DisordersDetecção de transtorno mental via EEG, microestados e redes neurais de grafosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufes.br/bitstreams/70f1736c-888e-46a5-9323-246e9a6785fa/download8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALDanielRibeiroCandeia-2025-Dissertacao.pdfDanielRibeiroCandeia-2025-Dissertacao.pdfapplication/pdf4512470http://repositorio.ufes.br/bitstreams/c706ded2-6554-4ca6-b888-623bff21e465/downloaddafbbd21c1086bbb2e802d61671e517aMD5210/206402025-11-19 14:46:59.302https://creativecommons.org/licenses/by/4.0/open accessoai:repositorio.ufes.br:10/20640http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestriufes@ufes.bropendoar:21082025-11-19T14:46:59Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| dc.title.none.fl_str_mv |
Detecção de transtorno mental via EEG, microestados e redes neurais de grafos |
| title |
Detecção de transtorno mental via EEG, microestados e redes neurais de grafos |
| spellingShingle |
Detecção de transtorno mental via EEG, microestados e redes neurais de grafos Candeia, Daniel Ribeiro Engenharia Elétrica Rede Neural de Grafos Microestados de EEG Grafos Eletroencefalograma Transtornos Mentais Graph Neural Network EEG Microstates Graphs Electroencephalogram Mental Disorders |
| title_short |
Detecção de transtorno mental via EEG, microestados e redes neurais de grafos |
| title_full |
Detecção de transtorno mental via EEG, microestados e redes neurais de grafos |
| title_fullStr |
Detecção de transtorno mental via EEG, microestados e redes neurais de grafos |
| title_full_unstemmed |
Detecção de transtorno mental via EEG, microestados e redes neurais de grafos |
| title_sort |
Detecção de transtorno mental via EEG, microestados e redes neurais de grafos |
| author |
Candeia, Daniel Ribeiro |
| author_facet |
Candeia, Daniel Ribeiro |
| author_role |
author |
| dc.contributor.authorID.none.fl_str_mv |
https://orcid.org/0009-0001-4427-7496 |
| dc.contributor.authorLattes.none.fl_str_mv |
http://lattes.cnpq.br/2696632870728316 |
| dc.contributor.advisor1.fl_str_mv |
Ciarelli, Patrick Marques |
| dc.contributor.advisor1ID.fl_str_mv |
https://orcid.org/0000-0003-3177-4028 |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/1267950518719423 |
| dc.contributor.author.fl_str_mv |
Candeia, Daniel Ribeiro |
| dc.contributor.referee1.fl_str_mv |
Côco, Klaus Fabian |
| dc.contributor.referee1ID.fl_str_mv |
https://orcid.org/0000-0001-7793-0693 |
| dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/1374499533178055 |
| dc.contributor.referee2.fl_str_mv |
Tello, Richard Junior Manuel Godinez |
| dc.contributor.referee2ID.fl_str_mv |
https://orcid.org/0000-0003-1428-0990 |
| dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/3966230569744918 |
| contributor_str_mv |
Ciarelli, Patrick Marques Côco, Klaus Fabian Tello, Richard Junior Manuel Godinez |
| dc.subject.cnpq.fl_str_mv |
Engenharia Elétrica |
| topic |
Engenharia Elétrica Rede Neural de Grafos Microestados de EEG Grafos Eletroencefalograma Transtornos Mentais Graph Neural Network EEG Microstates Graphs Electroencephalogram Mental Disorders |
| dc.subject.por.fl_str_mv |
Rede Neural de Grafos Microestados de EEG Grafos Eletroencefalograma Transtornos Mentais Graph Neural Network EEG Microstates Graphs Electroencephalogram Mental Disorders |
| description |
Electroencephalogram (EEG) is a non-invasive and cost-effective technique widely used to study brain activity and diagnose neurological disorders. However, visual analysis of EEG signals is complex and requires expertise, highlighting the need for automated diagnostic support systems. In this context, this study proposes a graph-based neural network model for detecting mental disorders using EEG signals, leveraging microstate analysis. The proposed model integrates graph neural networks (GNNs) with microstate analysis, which captures transient and stable patterns of brain activity. The TUH Abnormal EEG Corpus (TUAB) dataset, containing normal and abnormal EEG signals, was used. The process included the extraction of microstates, the construction of graphs based on Spearman correlation between EEG channels, the extraction of features from EEG signals, and the application of Principal Component Analysis (PCA) to reduce the dimensionality of these features. Three GNNs were trained, each associated with signals from each microstate, and their outputs were combined using an ensemble technique. The final model achieved an accuracy of 97.46% on the test set, outperforming existing results of methods in the literature. The results highlight the effectiveness of the proposed approach, demonstrating the potential of GNNs and microstate analysis for detecting mental disorders from EEG signals |
| publishDate |
2025 |
| dc.date.accessioned.fl_str_mv |
2025-11-19T17:39:41Z |
| dc.date.available.fl_str_mv |
2025-11-19T17:39:41Z |
| dc.date.issued.fl_str_mv |
2025-05-27 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://repositorio.ufes.br/handle/10/20640 |
| url |
http://repositorio.ufes.br/handle/10/20640 |
| dc.language.iso.fl_str_mv |
por pt |
| language |
por |
| language_invalid_str_mv |
pt |
| dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
Text |
| dc.publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Mestrado em Engenharia Elétrica |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Elétrica |
| dc.publisher.initials.fl_str_mv |
UFES |
| dc.publisher.country.fl_str_mv |
BR |
| dc.publisher.department.fl_str_mv |
Centro Tecnológico |
| publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Mestrado em Engenharia Elétrica |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) instname:Universidade Federal do Espírito Santo (UFES) instacron:UFES |
| instname_str |
Universidade Federal do Espírito Santo (UFES) |
| instacron_str |
UFES |
| institution |
UFES |
| reponame_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
| collection |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
| bitstream.url.fl_str_mv |
http://repositorio.ufes.br/bitstreams/70f1736c-888e-46a5-9323-246e9a6785fa/download http://repositorio.ufes.br/bitstreams/c706ded2-6554-4ca6-b888-623bff21e465/download |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 dafbbd21c1086bbb2e802d61671e517a |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES) |
| repository.mail.fl_str_mv |
riufes@ufes.br |
| _version_ |
1856037481878650880 |