Exportação concluída — 

Detecção de transtorno mental via EEG, microestados e redes neurais de grafos

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Candeia, Daniel Ribeiro
Orientador(a): Ciarelli, Patrick Marques lattes
Banca de defesa: Côco, Klaus Fabian lattes, Tello, Richard Junior Manuel Godinez lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Espírito Santo
Mestrado em Engenharia Elétrica
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica
Departamento: Centro Tecnológico
País: BR
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufes.br/handle/10/20640
Resumo: Electroencephalogram (EEG) is a non-invasive and cost-effective technique widely used to study brain activity and diagnose neurological disorders. However, visual analysis of EEG signals is complex and requires expertise, highlighting the need for automated diagnostic support systems. In this context, this study proposes a graph-based neural network model for detecting mental disorders using EEG signals, leveraging microstate analysis. The proposed model integrates graph neural networks (GNNs) with microstate analysis, which captures transient and stable patterns of brain activity. The TUH Abnormal EEG Corpus (TUAB) dataset, containing normal and abnormal EEG signals, was used. The process included the extraction of microstates, the construction of graphs based on Spearman correlation between EEG channels, the extraction of features from EEG signals, and the application of Principal Component Analysis (PCA) to reduce the dimensionality of these features. Three GNNs were trained, each associated with signals from each microstate, and their outputs were combined using an ensemble technique. The final model achieved an accuracy of 97.46% on the test set, outperforming existing results of methods in the literature. The results highlight the effectiveness of the proposed approach, demonstrating the potential of GNNs and microstate analysis for detecting mental disorders from EEG signals
id UFES_b59da6f315bb1a09441c866145d082b4
oai_identifier_str oai:repositorio.ufes.br:10/20640
network_acronym_str UFES
network_name_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository_id_str
spelling Ciarelli, Patrick Marques https://orcid.org/0000-0003-3177-4028http://lattes.cnpq.br/1267950518719423Candeia, Daniel Ribeirohttps://orcid.org/0009-0001-4427-7496http://lattes.cnpq.br/2696632870728316Côco, Klaus Fabian https://orcid.org/0000-0001-7793-0693http://lattes.cnpq.br/1374499533178055Tello, Richard Junior Manuel Godinez https://orcid.org/0000-0003-1428-0990http://lattes.cnpq.br/39662305697449182025-11-19T17:39:41Z2025-11-19T17:39:41Z2025-05-27Electroencephalogram (EEG) is a non-invasive and cost-effective technique widely used to study brain activity and diagnose neurological disorders. However, visual analysis of EEG signals is complex and requires expertise, highlighting the need for automated diagnostic support systems. In this context, this study proposes a graph-based neural network model for detecting mental disorders using EEG signals, leveraging microstate analysis. The proposed model integrates graph neural networks (GNNs) with microstate analysis, which captures transient and stable patterns of brain activity. The TUH Abnormal EEG Corpus (TUAB) dataset, containing normal and abnormal EEG signals, was used. The process included the extraction of microstates, the construction of graphs based on Spearman correlation between EEG channels, the extraction of features from EEG signals, and the application of Principal Component Analysis (PCA) to reduce the dimensionality of these features. Three GNNs were trained, each associated with signals from each microstate, and their outputs were combined using an ensemble technique. The final model achieved an accuracy of 97.46% on the test set, outperforming existing results of methods in the literature. The results highlight the effectiveness of the proposed approach, demonstrating the potential of GNNs and microstate analysis for detecting mental disorders from EEG signalsO eletroencefalograma (EEG) é uma técnica não invasiva e de baixo custo, amplamente utilizada para o estudo da atividade cerebral e diagnóstico de doenças neurológicas. No entanto, a análise visual de sinais de EEG é complexa e demanda expertise, o que justifica a necessidade de sistemas automatizados para auxiliar no diagnóstico. Neste contexto, o presente trabalho propõe um modelo de rede neural baseado em grafos para a detecção de transtornos mentais a partir de sinais de EEG, utilizando a análise de microestados. O modelo proposto combina redes neurais de grafos (GNN) com a análise de microestados, que representam padrões transitórios e estáveis da atividade cerebral. A base de dados utilizada foi a TUH Abnormal EEG Corpus (TUAB), contendo sinais de EEG normais e anormais. O processo incluiu a extração de microestados, a criação de grafos a partir da correlação de Spearman entre os canais de EEG, a extração de características dos sinais de EEG e a aplicação da Análise de Componentes Principais (PCA) para reduzir a dimensionalidade dessas características. Três redes neurais de grafos foram treinadas, cada uma associada a sinais de cada microestado, e os resultados foram combinados por meio de uma técnica de ensemble. O modelo final alcançou uma acurácia de 97,46% no conjunto de testes, superando os resultados de outros métodos existentes na literatura. Os resultados demonstram a eficácia da abordagem proposta, destacando o potencial das GNN e da análise de microestados para a detecção de transtornos mentais a partir de sinais de EEGCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Texthttp://repositorio.ufes.br/handle/10/20640porptUniversidade Federal do Espírito SantoMestrado em Engenharia ElétricaPrograma de Pós-Graduação em Engenharia ElétricaUFESBRCentro Tecnológicohttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessEngenharia ElétricaRede Neural de GrafosMicroestados de EEGGrafosEletroencefalogramaTranstornos MentaisGraph Neural NetworkEEG MicrostatesGraphsElectroencephalogramMental DisordersDetecção de transtorno mental via EEG, microestados e redes neurais de grafosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufes.br/bitstreams/70f1736c-888e-46a5-9323-246e9a6785fa/download8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALDanielRibeiroCandeia-2025-Dissertacao.pdfDanielRibeiroCandeia-2025-Dissertacao.pdfapplication/pdf4512470http://repositorio.ufes.br/bitstreams/c706ded2-6554-4ca6-b888-623bff21e465/downloaddafbbd21c1086bbb2e802d61671e517aMD5210/206402025-11-19 14:46:59.302https://creativecommons.org/licenses/by/4.0/open accessoai:repositorio.ufes.br:10/20640http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestriufes@ufes.bropendoar:21082025-11-19T14:46:59Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
dc.title.none.fl_str_mv Detecção de transtorno mental via EEG, microestados e redes neurais de grafos
title Detecção de transtorno mental via EEG, microestados e redes neurais de grafos
spellingShingle Detecção de transtorno mental via EEG, microestados e redes neurais de grafos
Candeia, Daniel Ribeiro
Engenharia Elétrica
Rede Neural de Grafos
Microestados de EEG
Grafos
Eletroencefalograma
Transtornos Mentais
Graph Neural Network
EEG Microstates
Graphs
Electroencephalogram
Mental Disorders
title_short Detecção de transtorno mental via EEG, microestados e redes neurais de grafos
title_full Detecção de transtorno mental via EEG, microestados e redes neurais de grafos
title_fullStr Detecção de transtorno mental via EEG, microestados e redes neurais de grafos
title_full_unstemmed Detecção de transtorno mental via EEG, microestados e redes neurais de grafos
title_sort Detecção de transtorno mental via EEG, microestados e redes neurais de grafos
author Candeia, Daniel Ribeiro
author_facet Candeia, Daniel Ribeiro
author_role author
dc.contributor.authorID.none.fl_str_mv https://orcid.org/0009-0001-4427-7496
dc.contributor.authorLattes.none.fl_str_mv http://lattes.cnpq.br/2696632870728316
dc.contributor.advisor1.fl_str_mv Ciarelli, Patrick Marques
dc.contributor.advisor1ID.fl_str_mv https://orcid.org/0000-0003-3177-4028
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1267950518719423
dc.contributor.author.fl_str_mv Candeia, Daniel Ribeiro
dc.contributor.referee1.fl_str_mv Côco, Klaus Fabian
dc.contributor.referee1ID.fl_str_mv https://orcid.org/0000-0001-7793-0693
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/1374499533178055
dc.contributor.referee2.fl_str_mv Tello, Richard Junior Manuel Godinez
dc.contributor.referee2ID.fl_str_mv https://orcid.org/0000-0003-1428-0990
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/3966230569744918
contributor_str_mv Ciarelli, Patrick Marques
Côco, Klaus Fabian
Tello, Richard Junior Manuel Godinez
dc.subject.cnpq.fl_str_mv Engenharia Elétrica
topic Engenharia Elétrica
Rede Neural de Grafos
Microestados de EEG
Grafos
Eletroencefalograma
Transtornos Mentais
Graph Neural Network
EEG Microstates
Graphs
Electroencephalogram
Mental Disorders
dc.subject.por.fl_str_mv Rede Neural de Grafos
Microestados de EEG
Grafos
Eletroencefalograma
Transtornos Mentais
Graph Neural Network
EEG Microstates
Graphs
Electroencephalogram
Mental Disorders
description Electroencephalogram (EEG) is a non-invasive and cost-effective technique widely used to study brain activity and diagnose neurological disorders. However, visual analysis of EEG signals is complex and requires expertise, highlighting the need for automated diagnostic support systems. In this context, this study proposes a graph-based neural network model for detecting mental disorders using EEG signals, leveraging microstate analysis. The proposed model integrates graph neural networks (GNNs) with microstate analysis, which captures transient and stable patterns of brain activity. The TUH Abnormal EEG Corpus (TUAB) dataset, containing normal and abnormal EEG signals, was used. The process included the extraction of microstates, the construction of graphs based on Spearman correlation between EEG channels, the extraction of features from EEG signals, and the application of Principal Component Analysis (PCA) to reduce the dimensionality of these features. Three GNNs were trained, each associated with signals from each microstate, and their outputs were combined using an ensemble technique. The final model achieved an accuracy of 97.46% on the test set, outperforming existing results of methods in the literature. The results highlight the effectiveness of the proposed approach, demonstrating the potential of GNNs and microstate analysis for detecting mental disorders from EEG signals
publishDate 2025
dc.date.accessioned.fl_str_mv 2025-11-19T17:39:41Z
dc.date.available.fl_str_mv 2025-11-19T17:39:41Z
dc.date.issued.fl_str_mv 2025-05-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufes.br/handle/10/20640
url http://repositorio.ufes.br/handle/10/20640
dc.language.iso.fl_str_mv por
pt
language por
language_invalid_str_mv pt
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv Text
dc.publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Mestrado em Engenharia Elétrica
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Elétrica
dc.publisher.initials.fl_str_mv UFES
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Centro Tecnológico
publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Mestrado em Engenharia Elétrica
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
instname:Universidade Federal do Espírito Santo (UFES)
instacron:UFES
instname_str Universidade Federal do Espírito Santo (UFES)
instacron_str UFES
institution UFES
reponame_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
collection Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
bitstream.url.fl_str_mv http://repositorio.ufes.br/bitstreams/70f1736c-888e-46a5-9323-246e9a6785fa/download
http://repositorio.ufes.br/bitstreams/c706ded2-6554-4ca6-b888-623bff21e465/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
dafbbd21c1086bbb2e802d61671e517a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)
repository.mail.fl_str_mv riufes@ufes.br
_version_ 1856037481878650880