Fatores genéticos de risco e proteção para sequelas neurológicas da COVID-19
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | , |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal do Espírito Santo
Mestrado em Biotecnologia |
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Biotecnologia
|
| Departamento: |
Centro de Ciências da Saúde
|
| País: |
BR
|
| Palavras-chave em Português: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | http://repositorio.ufes.br/handle/10/20249 |
Resumo: | COVID-19, caused by SARS-CoV-2, has triggered a global crisis with significant health, social, and economic impacts. Although most infected individuals recover, some develop persistent sequelae known as post-COVID conditions, including neurological manifestations affecting the peripheral nervous system (PNS). Recent evidence suggests that host genetics may influence the susceptibility and severity of these sequelae, highlighting the importance of investigating genetic biomarkers associated with their occurrence. This is a case-control study aiming to identify genetic variants linked to the development of PNS sequelae following COVID-19, using whole-exome sequencing (WES) data. The cohort comprises 312 individuals without a complete vaccination scheme prior to infection, including 161 with sequelae (case group) and 151 without sequelae (control group). Clinical, sociodemographic, and genetic characteristics were analyzed. For genetic risk prediction, a machine learning (ML) model was implemented, testing different classifiers. The logistic regression (LR) model showed the best performance (AUC-ROC = 0.90, accuracy = 82%, and F1-score = 0.83), highlighting 20 SNPs most influential in predicting the risk of neurological sequelae. Analyses predominantly revealed pathways related to immune regulation, with the HLA-A (Antigen Peptide Transporter) gene playing a prominent role in this context. The PAQR5 gene (Progestin and AdipoQ Receptor Family Member 5), associated with steroid hormone signaling, was also identified. Additionally, other genes with undefined or poorly characterized functions, such as NPIPB15 (Nuclear Pore Complex Interacting Protein Family Member B15), possibly involved in nuclear transport, were observed. These findings suggest that immune response, inflammation, and alterations in lipid and hormonal metabolism may play a relevant role in the predisposition to neurological sequelae. The results obtained thus far provide important evidence on the genetic basis of these sequelae, contributing to the identification of susceptibility biomarkers and potential therapeutic targets, which may support advances, particularly in the clinical management of post-COVID-19 conditions |
| id |
UFES_ba56bd8562f4a05d53396bd3f85e3271 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufes.br:10/20249 |
| network_acronym_str |
UFES |
| network_name_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
| repository_id_str |
|
| spelling |
Meira, Débora Dummer https://orcid.org/0000-0002-6092-2459http://lattes.cnpq.br/7199119599752978Louro, Iuri Drumond https://orcid.org/0000-0001-5160-9615http://lattes.cnpq.br/3817361438227180Guaitolini, Yasmin Moretohttps://orcid.org/0009-0007-6500-3092http://lattes.cnpq.br/8081444745164015Paula, Flavia de https://orcid.org/0000-0001-8679-2982http://lattes.cnpq.br/7913201450663683Carvalho, Elizeu Fagundes de https://orcid.org/0000-0003-4620-7253http://lattes.cnpq.br/27424207388583092025-08-28T19:54:10Z2025-08-28T19:54:10Z2025-08-04COVID-19, caused by SARS-CoV-2, has triggered a global crisis with significant health, social, and economic impacts. Although most infected individuals recover, some develop persistent sequelae known as post-COVID conditions, including neurological manifestations affecting the peripheral nervous system (PNS). Recent evidence suggests that host genetics may influence the susceptibility and severity of these sequelae, highlighting the importance of investigating genetic biomarkers associated with their occurrence. This is a case-control study aiming to identify genetic variants linked to the development of PNS sequelae following COVID-19, using whole-exome sequencing (WES) data. The cohort comprises 312 individuals without a complete vaccination scheme prior to infection, including 161 with sequelae (case group) and 151 without sequelae (control group). Clinical, sociodemographic, and genetic characteristics were analyzed. For genetic risk prediction, a machine learning (ML) model was implemented, testing different classifiers. The logistic regression (LR) model showed the best performance (AUC-ROC = 0.90, accuracy = 82%, and F1-score = 0.83), highlighting 20 SNPs most influential in predicting the risk of neurological sequelae. Analyses predominantly revealed pathways related to immune regulation, with the HLA-A (Antigen Peptide Transporter) gene playing a prominent role in this context. The PAQR5 gene (Progestin and AdipoQ Receptor Family Member 5), associated with steroid hormone signaling, was also identified. Additionally, other genes with undefined or poorly characterized functions, such as NPIPB15 (Nuclear Pore Complex Interacting Protein Family Member B15), possibly involved in nuclear transport, were observed. These findings suggest that immune response, inflammation, and alterations in lipid and hormonal metabolism may play a relevant role in the predisposition to neurological sequelae. The results obtained thus far provide important evidence on the genetic basis of these sequelae, contributing to the identification of susceptibility biomarkers and potential therapeutic targets, which may support advances, particularly in the clinical management of post-COVID-19 conditionsA COVID-19, causada pelo SARS-CoV-2, gerou uma crise global com impactos sanitários, sociais e econômicos. Embora a maioria dos infectados se recupere, alguns indivíduos desenvolvem sequelas persistentes conhecidas como condições pós-COVID, incluindo manifestações neurológicas que afetam o sistema nervoso periférico (SNPer). Evidências recentes sugerem que a genética do hospedeiro pode influenciar a suscetibilidade e a gravidade dessas sequelas, tornando fundamental a investigação de biomarcadores genéticos associados à sua manifestação. Este é um estudo de delineamento caso-controle que busca identificar variações genéticas associadas ao desenvolvimento de sequelas no SNPer pós-COVID-19 utilizando dados de sequenciamento completo do exoma (WES). A coorte inclui 312 indivíduos sem esquema vacinal completo antes da infecção, sendo 161 com sequelas (grupo caso) e 151 sem sequelas (grupo controle). Foram analisadas características clínicas, sociodemográficas e genéticas. Para a predição do risco genético, foi implementado um modelo de aprendizado de máquina (machine learning - ML), no qual diferentes classificadores foram testados. O modelo de regressão logística (LR) apresentou o melhor desempenho (AUC-ROC = 0,90, acurácia = 82% e F1-score = 0,83), destacando 20 SNPs mais influentes na predição do risco de sequelas neurológicas. As análises evidenciaram, predominantemente, a presença de vias relacionadas à regulação imunológica, destacando-se a expressiva participação do gene HLA-A (Antigen Peptide Transporter) nesse contexto. Também foi identificado o gene PAQR5 (Progestin and AdipoQ Receptor Family Member 5), associado à sinalização de hormônios esteroides. Além disso, foram observados outros genes com função indefinida ou pouco caracterizada, a exemplo do NPIPB15 (Nuclear Pore Complex Interacting Protein Family Member B15), possivelmente relacionado ao transporte nuclear. Esses achados sugerem que a resposta imunológica, a inflamação e alterações no metabolismo lipídico e hormonal podem exercer influência relevante na predisposição a sequelas neurológicas pós-COVID-19. Os resultados obtidos até o momento já fornecem evidências importantes sobre a base genética dessas sequelas, contribuindo para a identificação de biomarcadores de suscetibilidade e potenciais alvos terapêuticos, o que possibilita avanços, principalmente no manejo clínico, das condições pós-COVID-19Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa e Inovação do Espírito Santo (Fapes)Texthttp://repositorio.ufes.br/handle/10/20249porptUniversidade Federal do Espírito SantoMestrado em BiotecnologiaPrograma de Pós-Graduação em BiotecnologiaUFESBRCentro de Ciências da Saúdehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessBiotecnologiaSARS-CoV-2COVID longaSequelas neurológicasAprendizado de máquinaBiomarcadores genéticosLong COVIDNeurological sequelaeMachine learningGenetic biomarkersFatores genéticos de risco e proteção para sequelas neurológicas da COVID-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESyasminguaitolini@gmail.comLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufes.br/bitstreams/b2788c5e-9ac6-4825-bb76-0025f40409b6/download8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALYasminMoretoGuaitolini-2025-Dissertacao.pdfYasminMoretoGuaitolini-2025-Dissertacao.pdfapplication/pdf1640273http://repositorio.ufes.br/bitstreams/c3a7fdd5-6fe0-46c9-be7f-9dc4f28c72e3/download65c045ed9ed506ee9debd3c7dbb8e65bMD5210/202492025-08-28 17:14:09.541https://creativecommons.org/licenses/by-nc-nd/4.0/open accessoai:repositorio.ufes.br:10/20249http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestriufes@ufes.bropendoar:21082025-08-28T17:14:09Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| dc.title.none.fl_str_mv |
Fatores genéticos de risco e proteção para sequelas neurológicas da COVID-19 |
| title |
Fatores genéticos de risco e proteção para sequelas neurológicas da COVID-19 |
| spellingShingle |
Fatores genéticos de risco e proteção para sequelas neurológicas da COVID-19 Guaitolini, Yasmin Moreto Biotecnologia SARS-CoV-2 COVID longa Sequelas neurológicas Aprendizado de máquina Biomarcadores genéticos Long COVID Neurological sequelae Machine learning Genetic biomarkers |
| title_short |
Fatores genéticos de risco e proteção para sequelas neurológicas da COVID-19 |
| title_full |
Fatores genéticos de risco e proteção para sequelas neurológicas da COVID-19 |
| title_fullStr |
Fatores genéticos de risco e proteção para sequelas neurológicas da COVID-19 |
| title_full_unstemmed |
Fatores genéticos de risco e proteção para sequelas neurológicas da COVID-19 |
| title_sort |
Fatores genéticos de risco e proteção para sequelas neurológicas da COVID-19 |
| author |
Guaitolini, Yasmin Moreto |
| author_facet |
Guaitolini, Yasmin Moreto |
| author_role |
author |
| dc.contributor.authorID.none.fl_str_mv |
https://orcid.org/0009-0007-6500-3092 |
| dc.contributor.authorLattes.none.fl_str_mv |
http://lattes.cnpq.br/8081444745164015 |
| dc.contributor.advisor-co1.fl_str_mv |
Meira, Débora Dummer |
| dc.contributor.advisor-co1ID.fl_str_mv |
https://orcid.org/0000-0002-6092-2459 |
| dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/7199119599752978 |
| dc.contributor.advisor1.fl_str_mv |
Louro, Iuri Drumond |
| dc.contributor.advisor1ID.fl_str_mv |
https://orcid.org/0000-0001-5160-9615 |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3817361438227180 |
| dc.contributor.author.fl_str_mv |
Guaitolini, Yasmin Moreto |
| dc.contributor.referee1.fl_str_mv |
Paula, Flavia de |
| dc.contributor.referee1ID.fl_str_mv |
https://orcid.org/0000-0001-8679-2982 |
| dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/7913201450663683 |
| dc.contributor.referee2.fl_str_mv |
Carvalho, Elizeu Fagundes de |
| dc.contributor.referee2ID.fl_str_mv |
https://orcid.org/0000-0003-4620-7253 |
| dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/2742420738858309 |
| contributor_str_mv |
Meira, Débora Dummer Louro, Iuri Drumond Paula, Flavia de Carvalho, Elizeu Fagundes de |
| dc.subject.cnpq.fl_str_mv |
Biotecnologia |
| topic |
Biotecnologia SARS-CoV-2 COVID longa Sequelas neurológicas Aprendizado de máquina Biomarcadores genéticos Long COVID Neurological sequelae Machine learning Genetic biomarkers |
| dc.subject.por.fl_str_mv |
SARS-CoV-2 COVID longa Sequelas neurológicas Aprendizado de máquina Biomarcadores genéticos Long COVID Neurological sequelae Machine learning Genetic biomarkers |
| description |
COVID-19, caused by SARS-CoV-2, has triggered a global crisis with significant health, social, and economic impacts. Although most infected individuals recover, some develop persistent sequelae known as post-COVID conditions, including neurological manifestations affecting the peripheral nervous system (PNS). Recent evidence suggests that host genetics may influence the susceptibility and severity of these sequelae, highlighting the importance of investigating genetic biomarkers associated with their occurrence. This is a case-control study aiming to identify genetic variants linked to the development of PNS sequelae following COVID-19, using whole-exome sequencing (WES) data. The cohort comprises 312 individuals without a complete vaccination scheme prior to infection, including 161 with sequelae (case group) and 151 without sequelae (control group). Clinical, sociodemographic, and genetic characteristics were analyzed. For genetic risk prediction, a machine learning (ML) model was implemented, testing different classifiers. The logistic regression (LR) model showed the best performance (AUC-ROC = 0.90, accuracy = 82%, and F1-score = 0.83), highlighting 20 SNPs most influential in predicting the risk of neurological sequelae. Analyses predominantly revealed pathways related to immune regulation, with the HLA-A (Antigen Peptide Transporter) gene playing a prominent role in this context. The PAQR5 gene (Progestin and AdipoQ Receptor Family Member 5), associated with steroid hormone signaling, was also identified. Additionally, other genes with undefined or poorly characterized functions, such as NPIPB15 (Nuclear Pore Complex Interacting Protein Family Member B15), possibly involved in nuclear transport, were observed. These findings suggest that immune response, inflammation, and alterations in lipid and hormonal metabolism may play a relevant role in the predisposition to neurological sequelae. The results obtained thus far provide important evidence on the genetic basis of these sequelae, contributing to the identification of susceptibility biomarkers and potential therapeutic targets, which may support advances, particularly in the clinical management of post-COVID-19 conditions |
| publishDate |
2025 |
| dc.date.accessioned.fl_str_mv |
2025-08-28T19:54:10Z |
| dc.date.available.fl_str_mv |
2025-08-28T19:54:10Z |
| dc.date.issued.fl_str_mv |
2025-08-04 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://repositorio.ufes.br/handle/10/20249 |
| url |
http://repositorio.ufes.br/handle/10/20249 |
| dc.language.iso.fl_str_mv |
por pt |
| language |
por |
| language_invalid_str_mv |
pt |
| dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
Text |
| dc.publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Mestrado em Biotecnologia |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Biotecnologia |
| dc.publisher.initials.fl_str_mv |
UFES |
| dc.publisher.country.fl_str_mv |
BR |
| dc.publisher.department.fl_str_mv |
Centro de Ciências da Saúde |
| publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Mestrado em Biotecnologia |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) instname:Universidade Federal do Espírito Santo (UFES) instacron:UFES |
| instname_str |
Universidade Federal do Espírito Santo (UFES) |
| instacron_str |
UFES |
| institution |
UFES |
| reponame_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
| collection |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
| bitstream.url.fl_str_mv |
http://repositorio.ufes.br/bitstreams/b2788c5e-9ac6-4825-bb76-0025f40409b6/download http://repositorio.ufes.br/bitstreams/c3a7fdd5-6fe0-46c9-be7f-9dc4f28c72e3/download |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 65c045ed9ed506ee9debd3c7dbb8e65b |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES) |
| repository.mail.fl_str_mv |
riufes@ufes.br |
| _version_ |
1856037473766866944 |