Classifier ensemble feature selection for automatic fault diagnosis
| Ano de defesa: | 2017 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal do Espírito Santo
BR Doutorado em Ciência da Computação Centro Tecnológico UFES Programa de Pós-Graduação em Informática |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://repositorio.ufes.br/handle/10/9872 |
Resumo: | An efficient ensemble feature selection scheme applied for fault diagnosis is proposed, based on three hypothesis: a. A fault diagnosis system does not need to be restricted to a single feature extraction model, on the contrary, it should use as many feature models as possible, since the extracted features are potentially discriminative and the feature pooling is subsequently reduced with feature selection; b. The feature selection process can be accelerated, without loss of classification performance, combining feature selection methods, in a way that faster and weaker methods reduce the number of potentially non-discriminative features, sending to slower and stronger methods a filtered smaller feature set; c. The optimal feature set for a multi-class problem might be different for each pair of classes. Therefore, the feature selection should be done using an one versus one scheme, even when multi-class classifiers are used. However, since the number of classifiers grows exponentially to the number of the classes, expensive techniques like Error-Correcting Output Codes (ECOC) might have a prohibitive computational cost for large datasets. Thus, a fast one versus one approach must be used to alleviate such a computational demand. These three hypothesis are corroborated by experiments. The main hypothesis of this work is that using these three approaches together is possible to improve significantly the classification performance of a classifier to identify conditions in industrial processes. Experiments have shown such an improvement for the 1-NN classifier in industrial processes used as case study. |
| id |
UFES_d379a8b4adf321e25d265f887b276fae |
|---|---|
| oai_identifier_str |
oai:repositorio.ufes.br:10/9872 |
| network_acronym_str |
UFES |
| network_name_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
| repository_id_str |
|
| spelling |
Classifier ensemble feature selection for automatic fault diagnosisClassifier ensembleFeature selectionAutomatic fault diagnosisSeleção de características (Computação)Localização de falhas (Engenharia)Classificadores (Linguistica)Ciência da Computação004An efficient ensemble feature selection scheme applied for fault diagnosis is proposed, based on three hypothesis: a. A fault diagnosis system does not need to be restricted to a single feature extraction model, on the contrary, it should use as many feature models as possible, since the extracted features are potentially discriminative and the feature pooling is subsequently reduced with feature selection; b. The feature selection process can be accelerated, without loss of classification performance, combining feature selection methods, in a way that faster and weaker methods reduce the number of potentially non-discriminative features, sending to slower and stronger methods a filtered smaller feature set; c. The optimal feature set for a multi-class problem might be different for each pair of classes. Therefore, the feature selection should be done using an one versus one scheme, even when multi-class classifiers are used. However, since the number of classifiers grows exponentially to the number of the classes, expensive techniques like Error-Correcting Output Codes (ECOC) might have a prohibitive computational cost for large datasets. Thus, a fast one versus one approach must be used to alleviate such a computational demand. These three hypothesis are corroborated by experiments. The main hypothesis of this work is that using these three approaches together is possible to improve significantly the classification performance of a classifier to identify conditions in industrial processes. Experiments have shown such an improvement for the 1-NN classifier in industrial processes used as case study.ResumoUniversidade Federal do Espírito SantoBRDoutorado em Ciência da ComputaçãoCentro TecnológicoUFESPrograma de Pós-Graduação em InformáticaVarejão, Flávio MiguelRauber, Thomas WalterSalles, Evandro Ottoni TeatiniCarvalho, André Carlos Ponce de Leon Ferreira deSantos, Thiago Oliveira dosConci, AuraBoldt, Francisco de Assis2018-08-02T00:04:07Z2018-08-012018-08-02T00:04:07Z2017-07-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisTextapplication/pdfBOLDT, Francisco de Assis. Classifier ensemble feature selection for automatic fault diagnosis. 2017. 112 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Espírito Santo, Centro Tecnológico, Vitória, 2017.http://repositorio.ufes.br/handle/10/9872enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFES2024-07-17T16:54:51Zoai:repositorio.ufes.br:10/9872Repositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestriufes@ufes.bropendoar:21082024-07-17T16:54:51Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false |
| dc.title.none.fl_str_mv |
Classifier ensemble feature selection for automatic fault diagnosis |
| title |
Classifier ensemble feature selection for automatic fault diagnosis |
| spellingShingle |
Classifier ensemble feature selection for automatic fault diagnosis Boldt, Francisco de Assis Classifier ensemble Feature selection Automatic fault diagnosis Seleção de características (Computação) Localização de falhas (Engenharia) Classificadores (Linguistica) Ciência da Computação 004 |
| title_short |
Classifier ensemble feature selection for automatic fault diagnosis |
| title_full |
Classifier ensemble feature selection for automatic fault diagnosis |
| title_fullStr |
Classifier ensemble feature selection for automatic fault diagnosis |
| title_full_unstemmed |
Classifier ensemble feature selection for automatic fault diagnosis |
| title_sort |
Classifier ensemble feature selection for automatic fault diagnosis |
| author |
Boldt, Francisco de Assis |
| author_facet |
Boldt, Francisco de Assis |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Varejão, Flávio Miguel Rauber, Thomas Walter Salles, Evandro Ottoni Teatini Carvalho, André Carlos Ponce de Leon Ferreira de Santos, Thiago Oliveira dos Conci, Aura |
| dc.contributor.author.fl_str_mv |
Boldt, Francisco de Assis |
| dc.subject.por.fl_str_mv |
Classifier ensemble Feature selection Automatic fault diagnosis Seleção de características (Computação) Localização de falhas (Engenharia) Classificadores (Linguistica) Ciência da Computação 004 |
| topic |
Classifier ensemble Feature selection Automatic fault diagnosis Seleção de características (Computação) Localização de falhas (Engenharia) Classificadores (Linguistica) Ciência da Computação 004 |
| description |
An efficient ensemble feature selection scheme applied for fault diagnosis is proposed, based on three hypothesis: a. A fault diagnosis system does not need to be restricted to a single feature extraction model, on the contrary, it should use as many feature models as possible, since the extracted features are potentially discriminative and the feature pooling is subsequently reduced with feature selection; b. The feature selection process can be accelerated, without loss of classification performance, combining feature selection methods, in a way that faster and weaker methods reduce the number of potentially non-discriminative features, sending to slower and stronger methods a filtered smaller feature set; c. The optimal feature set for a multi-class problem might be different for each pair of classes. Therefore, the feature selection should be done using an one versus one scheme, even when multi-class classifiers are used. However, since the number of classifiers grows exponentially to the number of the classes, expensive techniques like Error-Correcting Output Codes (ECOC) might have a prohibitive computational cost for large datasets. Thus, a fast one versus one approach must be used to alleviate such a computational demand. These three hypothesis are corroborated by experiments. The main hypothesis of this work is that using these three approaches together is possible to improve significantly the classification performance of a classifier to identify conditions in industrial processes. Experiments have shown such an improvement for the 1-NN classifier in industrial processes used as case study. |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-07-14 2018-08-02T00:04:07Z 2018-08-01 2018-08-02T00:04:07Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
BOLDT, Francisco de Assis. Classifier ensemble feature selection for automatic fault diagnosis. 2017. 112 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Espírito Santo, Centro Tecnológico, Vitória, 2017. http://repositorio.ufes.br/handle/10/9872 |
| identifier_str_mv |
BOLDT, Francisco de Assis. Classifier ensemble feature selection for automatic fault diagnosis. 2017. 112 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Espírito Santo, Centro Tecnológico, Vitória, 2017. |
| url |
http://repositorio.ufes.br/handle/10/9872 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
Text application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo BR Doutorado em Ciência da Computação Centro Tecnológico UFES Programa de Pós-Graduação em Informática |
| publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo BR Doutorado em Ciência da Computação Centro Tecnológico UFES Programa de Pós-Graduação em Informática |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) instname:Universidade Federal do Espírito Santo (UFES) instacron:UFES |
| instname_str |
Universidade Federal do Espírito Santo (UFES) |
| instacron_str |
UFES |
| institution |
UFES |
| reponame_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
| collection |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES) |
| repository.mail.fl_str_mv |
riufes@ufes.br |
| _version_ |
1834479132936765440 |