Avaliação de estágios sucessionais de florestas estacionais semideciduais com uso de dados hiperespectrais e LiDAR obtidos a partir de aeronave remotamente pilotada

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Pinon, Tobias Baruc Moreira
Orientador(a): Mendonça, Adriano Ribeiro de lattes
Banca de defesa: Almeida, Catherine Torres de lattes, Fernandes, Milton Marques lattes, Martins Neto, Rorai Pereira lattes, Silva, Gilson Fernandes da lattes
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Espírito Santo
Doutorado em Ciências Florestais
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciências Florestais
Departamento: Centro de Ciências Agrárias e Engenharias
País: BR
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufes.br/handle/10/20052
Resumo: The Atlantic Forest in the state of Espírito Santo has undergone intense degradation, highlighting the urgent need for rapid and accurate methods for its monitoring and conservation. Brazilian Resolution Conama No. 29/1994 establishes criteria for classifying secondary vegetation into successional stages, which determine the potential for forest use. However, this classification, when carried out in the field, is heavily reliant on the expertise of the technical team, due to factors such as training, subjective criteria, and the lack of adequate instruments—potentially compromising the reliability of the results. In this context, the objective of this study was to classify successional stages of vegetation using data acquired by hyperspectral and LiDAR sensors mounted on a Remotely Piloted Aircraft (RPA). The research was conducted in regenerating pasturelands and forest fragments located in southern Espírito Santo, where dendrometric variables such as diameter at breast height (DBH) and total tree height were collected within 30 × 30 m plots. These field measurements were related to hyperspectral (with and without shadow) and LiDAR-derived metrics to estimate dendrometric parameters—mean diameter (D), mean height (H), and basal area (G)—using regression models. Model accuracy was evaluated using the root mean square error (RMSE), adjusted coefficient of determination (adjusted R²), and histograms of percentage error. Successional stage classification was performed using a rule-based method under two scenarios: one with three stages (initial, intermediate, and advanced), and another including the regenerating pasture class. In addition, an unsupervised classification was conducted using hierarchical clustering based on the estimated dendrometric variables and structural and spectral metrics, resulting in five groups: three successional stages and two pasture categories (open and dense shrublands). A principal component analysis (PCA) was also applied. The variables D and H were estimated with higher accuracy using combined data (adjusted R² = 88% and 90%, respectively), while G performed best with LiDAR data alone (adjusted R² = 92%). Shadow pixel removal slightly improved model performance, although its impact on predictive quality was limited. The rule-based classification with three categories achieved an overall accuracy of 88% (Kappa = 0.81), decreasing to 68% (Kappa = 0.59) with the inclusion of the regenerating pasture class. The unsupervised classification using the estimated variables for five classes (open and dense shrublands, and successional stages) reached an accuracy of 64% (Kappa = 0.55). Conversely, the classification based solely on hyperspectral metrics showed high agreement with field-defined stages (92%), whereas LiDAR metrics presented lower correspondence. Multivariate analysis revealed that spectral and structural metrics adequately represent the successional gradient. The integration of hyperspectral and LiDAR data proved effective for the automated mapping of large and inaccessible areas, providing a promising tool to complement forest inventories and reduce subjectivity in the application of legal criteria
id UFES_eda09ab5aa8df3632647091b77f6d738
oai_identifier_str oai:repositorio.ufes.br:10/20052
network_acronym_str UFES
network_name_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository_id_str
spelling Almeida, André Quintão de https://orcid.org/0000-0002-5063-1762http://lattes.cnpq.br/5929672339693607Effgen, Emanuel Maretto https://orcid.org/0000-0002-9031-6337http://lattes.cnpq.br/0205196565849611Mendonça, Adriano Ribeiro de https://orcid.org/0000-0003-3307-8579http://lattes.cnpq.br/9110967421921927Pinon, Tobias Baruc Moreirahttps://orcid.org/0000-0001-9200-1024http://lattes.cnpq.br/8571909054406808Almeida, Catherine Torres de https://orcid.org/0000-0002-8140-2903http://lattes.cnpq.br/5534145837431294Fernandes, Milton Marques https://orcid.org/0000-0002-9394-0020http://lattes.cnpq.br/2151263512584100Martins Neto, Rorai Pereirahttps://orcid.org/0000-0001-5318-2627http://lattes.cnpq.br/4925375972651580Silva, Gilson Fernandes da https://orcid.org/0000-0001-7853-6284http://lattes.cnpq.br/86432638003136252025-08-07T18:59:58Z2025-08-07T18:59:58Z2025-06-03The Atlantic Forest in the state of Espírito Santo has undergone intense degradation, highlighting the urgent need for rapid and accurate methods for its monitoring and conservation. Brazilian Resolution Conama No. 29/1994 establishes criteria for classifying secondary vegetation into successional stages, which determine the potential for forest use. However, this classification, when carried out in the field, is heavily reliant on the expertise of the technical team, due to factors such as training, subjective criteria, and the lack of adequate instruments—potentially compromising the reliability of the results. In this context, the objective of this study was to classify successional stages of vegetation using data acquired by hyperspectral and LiDAR sensors mounted on a Remotely Piloted Aircraft (RPA). The research was conducted in regenerating pasturelands and forest fragments located in southern Espírito Santo, where dendrometric variables such as diameter at breast height (DBH) and total tree height were collected within 30 × 30 m plots. These field measurements were related to hyperspectral (with and without shadow) and LiDAR-derived metrics to estimate dendrometric parameters—mean diameter (D), mean height (H), and basal area (G)—using regression models. Model accuracy was evaluated using the root mean square error (RMSE), adjusted coefficient of determination (adjusted R²), and histograms of percentage error. Successional stage classification was performed using a rule-based method under two scenarios: one with three stages (initial, intermediate, and advanced), and another including the regenerating pasture class. In addition, an unsupervised classification was conducted using hierarchical clustering based on the estimated dendrometric variables and structural and spectral metrics, resulting in five groups: three successional stages and two pasture categories (open and dense shrublands). A principal component analysis (PCA) was also applied. The variables D and H were estimated with higher accuracy using combined data (adjusted R² = 88% and 90%, respectively), while G performed best with LiDAR data alone (adjusted R² = 92%). Shadow pixel removal slightly improved model performance, although its impact on predictive quality was limited. The rule-based classification with three categories achieved an overall accuracy of 88% (Kappa = 0.81), decreasing to 68% (Kappa = 0.59) with the inclusion of the regenerating pasture class. The unsupervised classification using the estimated variables for five classes (open and dense shrublands, and successional stages) reached an accuracy of 64% (Kappa = 0.55). Conversely, the classification based solely on hyperspectral metrics showed high agreement with field-defined stages (92%), whereas LiDAR metrics presented lower correspondence. Multivariate analysis revealed that spectral and structural metrics adequately represent the successional gradient. The integration of hyperspectral and LiDAR data proved effective for the automated mapping of large and inaccessible areas, providing a promising tool to complement forest inventories and reduce subjectivity in the application of legal criteriaA Mata Atlântica do Espírito Santo tem sido intensamente degradada, o que reforça a necessidade de métodos ágeis e precisos para sua fiscalização e conservação. A Resolução Conama nº 29/1994 estabelece critérios para a classificação da vegetação secundária em estágios sucessionais, determinando a possibilidade de exploração florestal. No entanto, essa classificação realizada em campo depende fortemente da experiência da equipe técnica, devido à formação, critérios subjetivos e ausência de instrumentos adequados, o que pode comprometer a confiabilidade dos resultados. Diante disso, este estudo tem como objetivo classificar estágios sucessionais da vegetação com o uso de dados obtidos por sensores hiperespectrais e LiDAR embarcados em Aeronave Remotamente Pilotada (ARP). A pesquisa foi conduzida em áreas de pastagem em regeneração e fragmentos florestais no sul do Espírito Santo, onde foram coletadas variáveis dendrométricas como diâmetro a 1,3m do solo (D) e altura total (H) das árvores em parcelas de 30 x 30 m. Essas variáveis foram relacionadas a métricas hiperespectrais (com e sem sombra) e LiDAR para estimar parâmetros dendrométricos, como diâmetro médio (D ̅), altura total média (H ̅) e área basal (G), por meio de modelos de regressão. A acurácia dos modelos foi avaliada com base na raiz do quadrado médio do erro (RMSE), no coeficiente de determinação ajustado (R² ajustado) e em histogramas de erro percentual. A classificação dos estágios foi realizada por método baseado em regras, considerando dois cenários: um com três estágios (inicial, médio e avançado) e outro com a inclusão da classe de pastagem em regeneração. Também foi conduzida uma classificação não supervisionada por agrupamento hierárquico, com base nas estimativas das variáveis dendrométricas e métricas espectrais e estruturais, resultando em cinco grupos: três estágios sucessionais e duas categorias de pastagem (pasto sujo ralo e denso). Complementarmente, aplicou se uma análise de componentes principais (PCA).O D ̅ e a H ̅ foram estimados com maior acurácia com dados combinados (R² ajustado = 88% e 90%, respectivamente), enquanto a G apresentou melhor desempenho com dados LiDAR (R² ajustado = 92%). A exclusão de pixels sombreados resultou em leve ganho na performance dos modelos, com impacto limitado na qualidade preditiva. A classificação baseada em regras com três categorias atingiu acurácia global de 88% (Kappa = 0,81), reduzindo para 68% (Kappa = 0,59) com a inclusão da classe “Pasto Sujo”. A classificação não supervisionada com estimativas das variáveis para cinco classes (pasto sujo ralo, denso e estágios) apresentou acurácia de 64% (Kappa = 0,55). Por outro lado, a classificação baseada exclusivamente em métricas hiperespectrais demonstrou alta concordância com os estágios definidos em campo (92%), enquanto as métricas LiDAR apresentaram menor correspondência. A análise multivariada evidenciou que métricas espectrais e estruturais representam bem o gradiente sucessional. A integração de dados mostrou-se eficiente para o mapeamento automatizado de áreas extensas e de difícil acesso, podendo complementar os inventários florestais e reduzir a subjetividade na aplicação dos critérios legaisFundação de Amparo à Pesquisa e Inovação do Espírito Santo (Fapes) Texthttp://repositorio.ufes.br/handle/10/20052porptUniversidade Federal do Espírito SantoDoutorado em Ciências FlorestaisPrograma de Pós-Graduação em Ciências FlorestaisUFESBRCentro de Ciências Agrárias e Engenhariashttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessRecursos Florestais e Engenharia FlorestalMata atlânticaDroneSensoriamento remotoDrone aircraftUnmanned Aerial Vehicle (UAV)Remote sensingAtlantic ForestAvaliação de estágios sucessionais de florestas estacionais semideciduais com uso de dados hiperespectrais e LiDAR obtidos a partir de aeronave remotamente pilotadaAssessment of successional stages of semideciduous seasonal forests using hyperspectral and LiDAR data acquired from remotely piloted aircraft systeminfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFEStobias.pinon@idaf.es.gov.brLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufes.br/bitstreams/5cd0ba94-ba75-49a2-8683-c25bd59b1a0c/download8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALTobiasBarucMoreiraPinon-2025-Tese.pdfTobiasBarucMoreiraPinon-2025-Tese.pdfapplication/pdf8243619http://repositorio.ufes.br/bitstreams/a357ebaf-d5f8-4d0f-a999-c6ee50780928/download0a5a7d4005535808b48a48ee1b6b9d68MD5210/200522025-08-07 17:06:39.137https://creativecommons.org/licenses/by-nc-nd/4.0/open accessoai:repositorio.ufes.br:10/20052http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestriufes@ufes.bropendoar:21082025-08-07T17:06:39Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
dc.title.none.fl_str_mv Avaliação de estágios sucessionais de florestas estacionais semideciduais com uso de dados hiperespectrais e LiDAR obtidos a partir de aeronave remotamente pilotada
dc.title.alternative.none.fl_str_mv Assessment of successional stages of semideciduous seasonal forests using hyperspectral and LiDAR data acquired from remotely piloted aircraft system
title Avaliação de estágios sucessionais de florestas estacionais semideciduais com uso de dados hiperespectrais e LiDAR obtidos a partir de aeronave remotamente pilotada
spellingShingle Avaliação de estágios sucessionais de florestas estacionais semideciduais com uso de dados hiperespectrais e LiDAR obtidos a partir de aeronave remotamente pilotada
Pinon, Tobias Baruc Moreira
Recursos Florestais e Engenharia Florestal
Mata atlântica
Drone
Sensoriamento remoto
Drone aircraft
Unmanned Aerial Vehicle (UAV)
Remote sensing
Atlantic Forest
title_short Avaliação de estágios sucessionais de florestas estacionais semideciduais com uso de dados hiperespectrais e LiDAR obtidos a partir de aeronave remotamente pilotada
title_full Avaliação de estágios sucessionais de florestas estacionais semideciduais com uso de dados hiperespectrais e LiDAR obtidos a partir de aeronave remotamente pilotada
title_fullStr Avaliação de estágios sucessionais de florestas estacionais semideciduais com uso de dados hiperespectrais e LiDAR obtidos a partir de aeronave remotamente pilotada
title_full_unstemmed Avaliação de estágios sucessionais de florestas estacionais semideciduais com uso de dados hiperespectrais e LiDAR obtidos a partir de aeronave remotamente pilotada
title_sort Avaliação de estágios sucessionais de florestas estacionais semideciduais com uso de dados hiperespectrais e LiDAR obtidos a partir de aeronave remotamente pilotada
author Pinon, Tobias Baruc Moreira
author_facet Pinon, Tobias Baruc Moreira
author_role author
dc.contributor.authorID.none.fl_str_mv https://orcid.org/0000-0001-9200-1024
dc.contributor.authorLattes.none.fl_str_mv http://lattes.cnpq.br/8571909054406808
dc.contributor.advisor-co1.fl_str_mv Almeida, André Quintão de
dc.contributor.advisor-co1ID.fl_str_mv https://orcid.org/0000-0002-5063-1762
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/5929672339693607
dc.contributor.advisor-co2.fl_str_mv Effgen, Emanuel Maretto
dc.contributor.advisor-co2ID.fl_str_mv https://orcid.org/0000-0002-9031-6337
dc.contributor.advisor-co2Lattes.fl_str_mv http://lattes.cnpq.br/0205196565849611
dc.contributor.advisor1.fl_str_mv Mendonça, Adriano Ribeiro de
dc.contributor.advisor1ID.fl_str_mv https://orcid.org/0000-0003-3307-8579
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/9110967421921927
dc.contributor.author.fl_str_mv Pinon, Tobias Baruc Moreira
dc.contributor.referee1.fl_str_mv Almeida, Catherine Torres de
dc.contributor.referee1ID.fl_str_mv https://orcid.org/0000-0002-8140-2903
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/5534145837431294
dc.contributor.referee2.fl_str_mv Fernandes, Milton Marques
dc.contributor.referee2ID.fl_str_mv https://orcid.org/0000-0002-9394-0020
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/2151263512584100
dc.contributor.referee3.fl_str_mv Martins Neto, Rorai Pereira
dc.contributor.referee3ID.fl_str_mv https://orcid.org/0000-0001-5318-2627
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/4925375972651580
dc.contributor.referee4.fl_str_mv Silva, Gilson Fernandes da
dc.contributor.referee4ID.fl_str_mv https://orcid.org/0000-0001-7853-6284
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/8643263800313625
contributor_str_mv Almeida, André Quintão de
Effgen, Emanuel Maretto
Mendonça, Adriano Ribeiro de
Almeida, Catherine Torres de
Fernandes, Milton Marques
Martins Neto, Rorai Pereira
Silva, Gilson Fernandes da
dc.subject.cnpq.fl_str_mv Recursos Florestais e Engenharia Florestal
topic Recursos Florestais e Engenharia Florestal
Mata atlântica
Drone
Sensoriamento remoto
Drone aircraft
Unmanned Aerial Vehicle (UAV)
Remote sensing
Atlantic Forest
dc.subject.por.fl_str_mv Mata atlântica
Drone
Sensoriamento remoto
Drone aircraft
Unmanned Aerial Vehicle (UAV)
Remote sensing
Atlantic Forest
description The Atlantic Forest in the state of Espírito Santo has undergone intense degradation, highlighting the urgent need for rapid and accurate methods for its monitoring and conservation. Brazilian Resolution Conama No. 29/1994 establishes criteria for classifying secondary vegetation into successional stages, which determine the potential for forest use. However, this classification, when carried out in the field, is heavily reliant on the expertise of the technical team, due to factors such as training, subjective criteria, and the lack of adequate instruments—potentially compromising the reliability of the results. In this context, the objective of this study was to classify successional stages of vegetation using data acquired by hyperspectral and LiDAR sensors mounted on a Remotely Piloted Aircraft (RPA). The research was conducted in regenerating pasturelands and forest fragments located in southern Espírito Santo, where dendrometric variables such as diameter at breast height (DBH) and total tree height were collected within 30 × 30 m plots. These field measurements were related to hyperspectral (with and without shadow) and LiDAR-derived metrics to estimate dendrometric parameters—mean diameter (D), mean height (H), and basal area (G)—using regression models. Model accuracy was evaluated using the root mean square error (RMSE), adjusted coefficient of determination (adjusted R²), and histograms of percentage error. Successional stage classification was performed using a rule-based method under two scenarios: one with three stages (initial, intermediate, and advanced), and another including the regenerating pasture class. In addition, an unsupervised classification was conducted using hierarchical clustering based on the estimated dendrometric variables and structural and spectral metrics, resulting in five groups: three successional stages and two pasture categories (open and dense shrublands). A principal component analysis (PCA) was also applied. The variables D and H were estimated with higher accuracy using combined data (adjusted R² = 88% and 90%, respectively), while G performed best with LiDAR data alone (adjusted R² = 92%). Shadow pixel removal slightly improved model performance, although its impact on predictive quality was limited. The rule-based classification with three categories achieved an overall accuracy of 88% (Kappa = 0.81), decreasing to 68% (Kappa = 0.59) with the inclusion of the regenerating pasture class. The unsupervised classification using the estimated variables for five classes (open and dense shrublands, and successional stages) reached an accuracy of 64% (Kappa = 0.55). Conversely, the classification based solely on hyperspectral metrics showed high agreement with field-defined stages (92%), whereas LiDAR metrics presented lower correspondence. Multivariate analysis revealed that spectral and structural metrics adequately represent the successional gradient. The integration of hyperspectral and LiDAR data proved effective for the automated mapping of large and inaccessible areas, providing a promising tool to complement forest inventories and reduce subjectivity in the application of legal criteria
publishDate 2025
dc.date.accessioned.fl_str_mv 2025-08-07T18:59:58Z
dc.date.available.fl_str_mv 2025-08-07T18:59:58Z
dc.date.issued.fl_str_mv 2025-06-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufes.br/handle/10/20052
url http://repositorio.ufes.br/handle/10/20052
dc.language.iso.fl_str_mv por
pt
language por
language_invalid_str_mv pt
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv Text
dc.publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Doutorado em Ciências Florestais
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciências Florestais
dc.publisher.initials.fl_str_mv UFES
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Centro de Ciências Agrárias e Engenharias
publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Doutorado em Ciências Florestais
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
instname:Universidade Federal do Espírito Santo (UFES)
instacron:UFES
instname_str Universidade Federal do Espírito Santo (UFES)
instacron_str UFES
institution UFES
reponame_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
collection Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
bitstream.url.fl_str_mv http://repositorio.ufes.br/bitstreams/5cd0ba94-ba75-49a2-8683-c25bd59b1a0c/download
http://repositorio.ufes.br/bitstreams/a357ebaf-d5f8-4d0f-a999-c6ee50780928/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
0a5a7d4005535808b48a48ee1b6b9d68
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)
repository.mail.fl_str_mv riufes@ufes.br
_version_ 1856037480641331200