Brain-Computer Interface for Lower-Limb Neurorehabilitation: From Signal Analysis to Practical Applications

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Díaz, Cristian Felipe Blanco
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Espírito Santo
BR
Mestrado em Engenharia Elétrica
Centro Tecnológico
UFES
Programa de Pós-Graduação em Engenharia Elétrica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufes.br/handle/10/17205
Resumo: In recent years, the development of Brain-Computer Interfaces (BCIs) or Brain-Machine Intarfaces (BMIs) with Electroencephalography (EEG) has gained recognition in the scientific community for implementing robotic systems for rehabilitation. For instance, Motorized Mini Exercise Bikes (MMEBs) have been used for passive assistance with control driven by Motor Imagery (MI). However, these BCIs face challenges, such as long calibrations and low customization in applications. In addition, intentionality detection with EEG signals during pedaling tasks has not been fully explored. This dissertation aims to use different strategies on EEG signals for the detection of pedaling tasks using several algorithms. In addition, these methodologies approaches to implement real-time neurorehabilitation BCIs. For this, protocols with active pedaling, passive pedaling, and MI tasks were executed and different signal processing methodologies were addressed. Some processing methodologies were based on Common Spatial Patterns (CSP), Power Spectrum Density (PSD) or Riemannian Geometry, whereas Machine and Deep learning techniques, such as Linear Discriminant Analysis (LDA) or Extreme Learning Machine (ELM), were used here to classify EEG signals with accuracies close to 0.95 for MI, and 0.80 for active pedaling. Riemannian geometry-based methods were also used to identify MI tasks after passive pedaling at three different speeds (30, 45, and 60 rpm) with accuracies close to 0.78. As main contribution, a BCI was designed with visual neurofeedback, passive pedaling assistance, and MI, which was evaluated in the online phase, achieving an accuracy of approximately 0.80, and providing a feedback to the subject, aiming to encourage modulations. Subsequently, it was possible to observe the cortical response in the parieto-central cortex of the brain during the session. The results allow concluding that the implemented methodologies are feasible and accurate for the design of robotic lower limb BCIs that allow more personalized physical and neural neurorehabilitation and better human-machine interaction, which could help in the restoration of skills of people with neuromotor disabilities. The results presented here open the door to continue exploring brain information during the development of lower-limb tasks that may allow technological innovation in BCI systems for rehabilitation. Additionally, the proposed system can be used in therapeutic interventions for people with neuromotor impairments, such as post-stroke or spinal cord injury populations.
id UFES_f5dff1e44a500ee8ece273ce84e4eaa2
oai_identifier_str oai:repositorio.ufes.br:10/17205
network_acronym_str UFES
network_name_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository_id_str
spelling Brain-Computer Interface for Lower-Limb Neurorehabilitation: From Signal Analysis to Practical Applicationstitle.alternativeInterface cérebro-computadorTecnologia de reabilitaçãoEletroencefalografiaProcessamento de biosinaisRobóticasubject.br-rjbnEngenharia ElétricaIn recent years, the development of Brain-Computer Interfaces (BCIs) or Brain-Machine Intarfaces (BMIs) with Electroencephalography (EEG) has gained recognition in the scientific community for implementing robotic systems for rehabilitation. For instance, Motorized Mini Exercise Bikes (MMEBs) have been used for passive assistance with control driven by Motor Imagery (MI). However, these BCIs face challenges, such as long calibrations and low customization in applications. In addition, intentionality detection with EEG signals during pedaling tasks has not been fully explored. This dissertation aims to use different strategies on EEG signals for the detection of pedaling tasks using several algorithms. In addition, these methodologies approaches to implement real-time neurorehabilitation BCIs. For this, protocols with active pedaling, passive pedaling, and MI tasks were executed and different signal processing methodologies were addressed. Some processing methodologies were based on Common Spatial Patterns (CSP), Power Spectrum Density (PSD) or Riemannian Geometry, whereas Machine and Deep learning techniques, such as Linear Discriminant Analysis (LDA) or Extreme Learning Machine (ELM), were used here to classify EEG signals with accuracies close to 0.95 for MI, and 0.80 for active pedaling. Riemannian geometry-based methods were also used to identify MI tasks after passive pedaling at three different speeds (30, 45, and 60 rpm) with accuracies close to 0.78. As main contribution, a BCI was designed with visual neurofeedback, passive pedaling assistance, and MI, which was evaluated in the online phase, achieving an accuracy of approximately 0.80, and providing a feedback to the subject, aiming to encourage modulations. Subsequently, it was possible to observe the cortical response in the parieto-central cortex of the brain during the session. The results allow concluding that the implemented methodologies are feasible and accurate for the design of robotic lower limb BCIs that allow more personalized physical and neural neurorehabilitation and better human-machine interaction, which could help in the restoration of skills of people with neuromotor disabilities. The results presented here open the door to continue exploring brain information during the development of lower-limb tasks that may allow technological innovation in BCI systems for rehabilitation. Additionally, the proposed system can be used in therapeutic interventions for people with neuromotor impairments, such as post-stroke or spinal cord injury populations.Nos últimos anos, o desenvolvimento de Interfaces Cérebro-Computador (ICC) com Eletroencefalografia (EEG) ganhou reconhecimento na comunidade científica para a implementação de sistemas de reabilitação robótica. Por exemplo, os Monociclos Estáticos Motorizados (MEMs) têm sido usadas para assistência passiva, com controle acionado pela Imagética Motora (IM). No entanto, essas ICCs enfrentam desafios como longo tempo de calibração, baixa personalização em aplicativos. Ademais, a detecção de intencionalidade com sinais de EEG durante tarefas de pedalada ainda não foi totalmente explorada. Esta dissertação tem como objetivo utilizar diferentes estratégias algorítmicas em sinais de EEG para a detecção de tarefas de pedalada, utilizando várias abordagens algorítmicas para implementar ICCs de neurorreabilitação em tempo real. Para isso, foram executados protocolos com tarefas de pedalada ativa, pedalada passiva e MI, onde foram abordadas diferentes metodologias de processamento de sinais. Algumas metodologias de processamento foram baseadas em Padrões Espaciais Comuns (CSP), Densidade do Espectro de Potência (PSD) ou Geometria Riemanniana, enquanto foram utilizadas t´ecnicas de aprendizado de m´aquina e aprendizado profundo, como a Análise Discriminante Linear (LDA) ou a Máquina de Aprendizado Extremo (ELM) para classificar sinais de EEG com precisão próxima a 0.95 para MI e 0.80 para pedalada passiva. Métodos baseados em geometria Riemanniana também foram utilizados para identificar tarefas de IM após o recebimento de pedaladas passivas em três velocidades diferentes (30, 45 e 60 rpm) com precisão próxima a 0.78. Como principal contribuição, foi projetada uma ICC com neurofeedback visual, assistência passiva ao pedal e IM, que foi avaliada na fase on-line, alcançando uma precisão de aproximadamente 0.80 e fornecendo um feedback ao o indivíduo, com o objetivo de incentivar modulações. Posteriormente, foi possível observar a resposta cortical no córtex parieto-central do cérebro durante a sessão. Os resultados nos permitem concluir que as metodologias implementadas são viáveis e precisas para o projeto de ICCs robóticas de membros inferiores. Ademas, elas permitem uma neurorreabilitação física e neural mais personalizada e uma melhor interação homem-máquina, o que poderia ajudar na restauração das habilidades de pessoas com deficiências neuromotoras. Os resultados apresentados aqui deixam a porta aberta para continuar explorando as informações cerebrais durante o desenvolvimento de tarefas para membros inferiores, o que pode permitir a inovação tecnológica em sistemas de ICC para reabilitação. Além disso, propõe-se utilizar o sistema proposto em intervenções terapêuticas para pessoas com deficiência neuromotora, como pacientes pós-AVC ou com lesão da medula espinhal.Universidade Federal do Espírito SantoBRMestrado em Engenharia ElétricaCentro TecnológicoUFESPrograma de Pós-Graduação em Engenharia ElétricaBastos Filho, Teodiano Freirehttps://orcid.org/0000000211852773http://lattes.cnpq.br/3761585497791105Souza, Alberto Ferreira deAndrade, Rafhael Milanezi deRodriguez, Denis DelisleDíaz, Cristian Felipe Blanco2024-05-30T01:42:44Z2024-05-30T01:42:44Z2023-08-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisTextapplication/pdfhttp://repositorio.ufes.br/handle/10/17205porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFES2024-12-09T22:14:15Zoai:repositorio.ufes.br:10/17205Repositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestriufes@ufes.bropendoar:21082024-12-09T22:14:15Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false
dc.title.none.fl_str_mv Brain-Computer Interface for Lower-Limb Neurorehabilitation: From Signal Analysis to Practical Applications
title.alternative
title Brain-Computer Interface for Lower-Limb Neurorehabilitation: From Signal Analysis to Practical Applications
spellingShingle Brain-Computer Interface for Lower-Limb Neurorehabilitation: From Signal Analysis to Practical Applications
Díaz, Cristian Felipe Blanco
Interface cérebro-computador
Tecnologia de reabilitação
Eletroencefalografia
Processamento de biosinais
Robótica
subject.br-rjbn
Engenharia Elétrica
title_short Brain-Computer Interface for Lower-Limb Neurorehabilitation: From Signal Analysis to Practical Applications
title_full Brain-Computer Interface for Lower-Limb Neurorehabilitation: From Signal Analysis to Practical Applications
title_fullStr Brain-Computer Interface for Lower-Limb Neurorehabilitation: From Signal Analysis to Practical Applications
title_full_unstemmed Brain-Computer Interface for Lower-Limb Neurorehabilitation: From Signal Analysis to Practical Applications
title_sort Brain-Computer Interface for Lower-Limb Neurorehabilitation: From Signal Analysis to Practical Applications
author Díaz, Cristian Felipe Blanco
author_facet Díaz, Cristian Felipe Blanco
author_role author
dc.contributor.none.fl_str_mv Bastos Filho, Teodiano Freire
https://orcid.org/0000000211852773
http://lattes.cnpq.br/3761585497791105
Souza, Alberto Ferreira de
Andrade, Rafhael Milanezi de
Rodriguez, Denis Delisle
dc.contributor.author.fl_str_mv Díaz, Cristian Felipe Blanco
dc.subject.por.fl_str_mv Interface cérebro-computador
Tecnologia de reabilitação
Eletroencefalografia
Processamento de biosinais
Robótica
subject.br-rjbn
Engenharia Elétrica
topic Interface cérebro-computador
Tecnologia de reabilitação
Eletroencefalografia
Processamento de biosinais
Robótica
subject.br-rjbn
Engenharia Elétrica
description In recent years, the development of Brain-Computer Interfaces (BCIs) or Brain-Machine Intarfaces (BMIs) with Electroencephalography (EEG) has gained recognition in the scientific community for implementing robotic systems for rehabilitation. For instance, Motorized Mini Exercise Bikes (MMEBs) have been used for passive assistance with control driven by Motor Imagery (MI). However, these BCIs face challenges, such as long calibrations and low customization in applications. In addition, intentionality detection with EEG signals during pedaling tasks has not been fully explored. This dissertation aims to use different strategies on EEG signals for the detection of pedaling tasks using several algorithms. In addition, these methodologies approaches to implement real-time neurorehabilitation BCIs. For this, protocols with active pedaling, passive pedaling, and MI tasks were executed and different signal processing methodologies were addressed. Some processing methodologies were based on Common Spatial Patterns (CSP), Power Spectrum Density (PSD) or Riemannian Geometry, whereas Machine and Deep learning techniques, such as Linear Discriminant Analysis (LDA) or Extreme Learning Machine (ELM), were used here to classify EEG signals with accuracies close to 0.95 for MI, and 0.80 for active pedaling. Riemannian geometry-based methods were also used to identify MI tasks after passive pedaling at three different speeds (30, 45, and 60 rpm) with accuracies close to 0.78. As main contribution, a BCI was designed with visual neurofeedback, passive pedaling assistance, and MI, which was evaluated in the online phase, achieving an accuracy of approximately 0.80, and providing a feedback to the subject, aiming to encourage modulations. Subsequently, it was possible to observe the cortical response in the parieto-central cortex of the brain during the session. The results allow concluding that the implemented methodologies are feasible and accurate for the design of robotic lower limb BCIs that allow more personalized physical and neural neurorehabilitation and better human-machine interaction, which could help in the restoration of skills of people with neuromotor disabilities. The results presented here open the door to continue exploring brain information during the development of lower-limb tasks that may allow technological innovation in BCI systems for rehabilitation. Additionally, the proposed system can be used in therapeutic interventions for people with neuromotor impairments, such as post-stroke or spinal cord injury populations.
publishDate 2023
dc.date.none.fl_str_mv 2023-08-30
2024-05-30T01:42:44Z
2024-05-30T01:42:44Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufes.br/handle/10/17205
url http://repositorio.ufes.br/handle/10/17205
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv Text
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Espírito Santo
BR
Mestrado em Engenharia Elétrica
Centro Tecnológico
UFES
Programa de Pós-Graduação em Engenharia Elétrica
publisher.none.fl_str_mv Universidade Federal do Espírito Santo
BR
Mestrado em Engenharia Elétrica
Centro Tecnológico
UFES
Programa de Pós-Graduação em Engenharia Elétrica
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
instname:Universidade Federal do Espírito Santo (UFES)
instacron:UFES
instname_str Universidade Federal do Espírito Santo (UFES)
instacron_str UFES
institution UFES
reponame_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
collection Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)
repository.mail.fl_str_mv riufes@ufes.br
_version_ 1834479108883480576