Brain-Computer Interface for Lower-Limb Neurorehabilitation: From Signal Analysis to Practical Applications
| Ano de defesa: | 2023 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal do Espírito Santo
BR Mestrado em Engenharia Elétrica Centro Tecnológico UFES Programa de Pós-Graduação em Engenharia Elétrica |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://repositorio.ufes.br/handle/10/17205 |
Resumo: | In recent years, the development of Brain-Computer Interfaces (BCIs) or Brain-Machine Intarfaces (BMIs) with Electroencephalography (EEG) has gained recognition in the scientific community for implementing robotic systems for rehabilitation. For instance, Motorized Mini Exercise Bikes (MMEBs) have been used for passive assistance with control driven by Motor Imagery (MI). However, these BCIs face challenges, such as long calibrations and low customization in applications. In addition, intentionality detection with EEG signals during pedaling tasks has not been fully explored. This dissertation aims to use different strategies on EEG signals for the detection of pedaling tasks using several algorithms. In addition, these methodologies approaches to implement real-time neurorehabilitation BCIs. For this, protocols with active pedaling, passive pedaling, and MI tasks were executed and different signal processing methodologies were addressed. Some processing methodologies were based on Common Spatial Patterns (CSP), Power Spectrum Density (PSD) or Riemannian Geometry, whereas Machine and Deep learning techniques, such as Linear Discriminant Analysis (LDA) or Extreme Learning Machine (ELM), were used here to classify EEG signals with accuracies close to 0.95 for MI, and 0.80 for active pedaling. Riemannian geometry-based methods were also used to identify MI tasks after passive pedaling at three different speeds (30, 45, and 60 rpm) with accuracies close to 0.78. As main contribution, a BCI was designed with visual neurofeedback, passive pedaling assistance, and MI, which was evaluated in the online phase, achieving an accuracy of approximately 0.80, and providing a feedback to the subject, aiming to encourage modulations. Subsequently, it was possible to observe the cortical response in the parieto-central cortex of the brain during the session. The results allow concluding that the implemented methodologies are feasible and accurate for the design of robotic lower limb BCIs that allow more personalized physical and neural neurorehabilitation and better human-machine interaction, which could help in the restoration of skills of people with neuromotor disabilities. The results presented here open the door to continue exploring brain information during the development of lower-limb tasks that may allow technological innovation in BCI systems for rehabilitation. Additionally, the proposed system can be used in therapeutic interventions for people with neuromotor impairments, such as post-stroke or spinal cord injury populations. |
| id |
UFES_f5dff1e44a500ee8ece273ce84e4eaa2 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufes.br:10/17205 |
| network_acronym_str |
UFES |
| network_name_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
| repository_id_str |
|
| spelling |
Brain-Computer Interface for Lower-Limb Neurorehabilitation: From Signal Analysis to Practical Applicationstitle.alternativeInterface cérebro-computadorTecnologia de reabilitaçãoEletroencefalografiaProcessamento de biosinaisRobóticasubject.br-rjbnEngenharia ElétricaIn recent years, the development of Brain-Computer Interfaces (BCIs) or Brain-Machine Intarfaces (BMIs) with Electroencephalography (EEG) has gained recognition in the scientific community for implementing robotic systems for rehabilitation. For instance, Motorized Mini Exercise Bikes (MMEBs) have been used for passive assistance with control driven by Motor Imagery (MI). However, these BCIs face challenges, such as long calibrations and low customization in applications. In addition, intentionality detection with EEG signals during pedaling tasks has not been fully explored. This dissertation aims to use different strategies on EEG signals for the detection of pedaling tasks using several algorithms. In addition, these methodologies approaches to implement real-time neurorehabilitation BCIs. For this, protocols with active pedaling, passive pedaling, and MI tasks were executed and different signal processing methodologies were addressed. Some processing methodologies were based on Common Spatial Patterns (CSP), Power Spectrum Density (PSD) or Riemannian Geometry, whereas Machine and Deep learning techniques, such as Linear Discriminant Analysis (LDA) or Extreme Learning Machine (ELM), were used here to classify EEG signals with accuracies close to 0.95 for MI, and 0.80 for active pedaling. Riemannian geometry-based methods were also used to identify MI tasks after passive pedaling at three different speeds (30, 45, and 60 rpm) with accuracies close to 0.78. As main contribution, a BCI was designed with visual neurofeedback, passive pedaling assistance, and MI, which was evaluated in the online phase, achieving an accuracy of approximately 0.80, and providing a feedback to the subject, aiming to encourage modulations. Subsequently, it was possible to observe the cortical response in the parieto-central cortex of the brain during the session. The results allow concluding that the implemented methodologies are feasible and accurate for the design of robotic lower limb BCIs that allow more personalized physical and neural neurorehabilitation and better human-machine interaction, which could help in the restoration of skills of people with neuromotor disabilities. The results presented here open the door to continue exploring brain information during the development of lower-limb tasks that may allow technological innovation in BCI systems for rehabilitation. Additionally, the proposed system can be used in therapeutic interventions for people with neuromotor impairments, such as post-stroke or spinal cord injury populations.Nos últimos anos, o desenvolvimento de Interfaces Cérebro-Computador (ICC) com Eletroencefalografia (EEG) ganhou reconhecimento na comunidade científica para a implementação de sistemas de reabilitação robótica. Por exemplo, os Monociclos Estáticos Motorizados (MEMs) têm sido usadas para assistência passiva, com controle acionado pela Imagética Motora (IM). No entanto, essas ICCs enfrentam desafios como longo tempo de calibração, baixa personalização em aplicativos. Ademais, a detecção de intencionalidade com sinais de EEG durante tarefas de pedalada ainda não foi totalmente explorada. Esta dissertação tem como objetivo utilizar diferentes estratégias algorítmicas em sinais de EEG para a detecção de tarefas de pedalada, utilizando várias abordagens algorítmicas para implementar ICCs de neurorreabilitação em tempo real. Para isso, foram executados protocolos com tarefas de pedalada ativa, pedalada passiva e MI, onde foram abordadas diferentes metodologias de processamento de sinais. Algumas metodologias de processamento foram baseadas em Padrões Espaciais Comuns (CSP), Densidade do Espectro de Potência (PSD) ou Geometria Riemanniana, enquanto foram utilizadas t´ecnicas de aprendizado de m´aquina e aprendizado profundo, como a Análise Discriminante Linear (LDA) ou a Máquina de Aprendizado Extremo (ELM) para classificar sinais de EEG com precisão próxima a 0.95 para MI e 0.80 para pedalada passiva. Métodos baseados em geometria Riemanniana também foram utilizados para identificar tarefas de IM após o recebimento de pedaladas passivas em três velocidades diferentes (30, 45 e 60 rpm) com precisão próxima a 0.78. Como principal contribuição, foi projetada uma ICC com neurofeedback visual, assistência passiva ao pedal e IM, que foi avaliada na fase on-line, alcançando uma precisão de aproximadamente 0.80 e fornecendo um feedback ao o indivíduo, com o objetivo de incentivar modulações. Posteriormente, foi possível observar a resposta cortical no córtex parieto-central do cérebro durante a sessão. Os resultados nos permitem concluir que as metodologias implementadas são viáveis e precisas para o projeto de ICCs robóticas de membros inferiores. Ademas, elas permitem uma neurorreabilitação física e neural mais personalizada e uma melhor interação homem-máquina, o que poderia ajudar na restauração das habilidades de pessoas com deficiências neuromotoras. Os resultados apresentados aqui deixam a porta aberta para continuar explorando as informações cerebrais durante o desenvolvimento de tarefas para membros inferiores, o que pode permitir a inovação tecnológica em sistemas de ICC para reabilitação. Além disso, propõe-se utilizar o sistema proposto em intervenções terapêuticas para pessoas com deficiência neuromotora, como pacientes pós-AVC ou com lesão da medula espinhal.Universidade Federal do Espírito SantoBRMestrado em Engenharia ElétricaCentro TecnológicoUFESPrograma de Pós-Graduação em Engenharia ElétricaBastos Filho, Teodiano Freirehttps://orcid.org/0000000211852773http://lattes.cnpq.br/3761585497791105Souza, Alberto Ferreira deAndrade, Rafhael Milanezi deRodriguez, Denis DelisleDíaz, Cristian Felipe Blanco2024-05-30T01:42:44Z2024-05-30T01:42:44Z2023-08-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisTextapplication/pdfhttp://repositorio.ufes.br/handle/10/17205porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFES2024-12-09T22:14:15Zoai:repositorio.ufes.br:10/17205Repositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestriufes@ufes.bropendoar:21082024-12-09T22:14:15Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false |
| dc.title.none.fl_str_mv |
Brain-Computer Interface for Lower-Limb Neurorehabilitation: From Signal Analysis to Practical Applications title.alternative |
| title |
Brain-Computer Interface for Lower-Limb Neurorehabilitation: From Signal Analysis to Practical Applications |
| spellingShingle |
Brain-Computer Interface for Lower-Limb Neurorehabilitation: From Signal Analysis to Practical Applications Díaz, Cristian Felipe Blanco Interface cérebro-computador Tecnologia de reabilitação Eletroencefalografia Processamento de biosinais Robótica subject.br-rjbn Engenharia Elétrica |
| title_short |
Brain-Computer Interface for Lower-Limb Neurorehabilitation: From Signal Analysis to Practical Applications |
| title_full |
Brain-Computer Interface for Lower-Limb Neurorehabilitation: From Signal Analysis to Practical Applications |
| title_fullStr |
Brain-Computer Interface for Lower-Limb Neurorehabilitation: From Signal Analysis to Practical Applications |
| title_full_unstemmed |
Brain-Computer Interface for Lower-Limb Neurorehabilitation: From Signal Analysis to Practical Applications |
| title_sort |
Brain-Computer Interface for Lower-Limb Neurorehabilitation: From Signal Analysis to Practical Applications |
| author |
Díaz, Cristian Felipe Blanco |
| author_facet |
Díaz, Cristian Felipe Blanco |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Bastos Filho, Teodiano Freire https://orcid.org/0000000211852773 http://lattes.cnpq.br/3761585497791105 Souza, Alberto Ferreira de Andrade, Rafhael Milanezi de Rodriguez, Denis Delisle |
| dc.contributor.author.fl_str_mv |
Díaz, Cristian Felipe Blanco |
| dc.subject.por.fl_str_mv |
Interface cérebro-computador Tecnologia de reabilitação Eletroencefalografia Processamento de biosinais Robótica subject.br-rjbn Engenharia Elétrica |
| topic |
Interface cérebro-computador Tecnologia de reabilitação Eletroencefalografia Processamento de biosinais Robótica subject.br-rjbn Engenharia Elétrica |
| description |
In recent years, the development of Brain-Computer Interfaces (BCIs) or Brain-Machine Intarfaces (BMIs) with Electroencephalography (EEG) has gained recognition in the scientific community for implementing robotic systems for rehabilitation. For instance, Motorized Mini Exercise Bikes (MMEBs) have been used for passive assistance with control driven by Motor Imagery (MI). However, these BCIs face challenges, such as long calibrations and low customization in applications. In addition, intentionality detection with EEG signals during pedaling tasks has not been fully explored. This dissertation aims to use different strategies on EEG signals for the detection of pedaling tasks using several algorithms. In addition, these methodologies approaches to implement real-time neurorehabilitation BCIs. For this, protocols with active pedaling, passive pedaling, and MI tasks were executed and different signal processing methodologies were addressed. Some processing methodologies were based on Common Spatial Patterns (CSP), Power Spectrum Density (PSD) or Riemannian Geometry, whereas Machine and Deep learning techniques, such as Linear Discriminant Analysis (LDA) or Extreme Learning Machine (ELM), were used here to classify EEG signals with accuracies close to 0.95 for MI, and 0.80 for active pedaling. Riemannian geometry-based methods were also used to identify MI tasks after passive pedaling at three different speeds (30, 45, and 60 rpm) with accuracies close to 0.78. As main contribution, a BCI was designed with visual neurofeedback, passive pedaling assistance, and MI, which was evaluated in the online phase, achieving an accuracy of approximately 0.80, and providing a feedback to the subject, aiming to encourage modulations. Subsequently, it was possible to observe the cortical response in the parieto-central cortex of the brain during the session. The results allow concluding that the implemented methodologies are feasible and accurate for the design of robotic lower limb BCIs that allow more personalized physical and neural neurorehabilitation and better human-machine interaction, which could help in the restoration of skills of people with neuromotor disabilities. The results presented here open the door to continue exploring brain information during the development of lower-limb tasks that may allow technological innovation in BCI systems for rehabilitation. Additionally, the proposed system can be used in therapeutic interventions for people with neuromotor impairments, such as post-stroke or spinal cord injury populations. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-08-30 2024-05-30T01:42:44Z 2024-05-30T01:42:44Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://repositorio.ufes.br/handle/10/17205 |
| url |
http://repositorio.ufes.br/handle/10/17205 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
Text application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo BR Mestrado em Engenharia Elétrica Centro Tecnológico UFES Programa de Pós-Graduação em Engenharia Elétrica |
| publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo BR Mestrado em Engenharia Elétrica Centro Tecnológico UFES Programa de Pós-Graduação em Engenharia Elétrica |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) instname:Universidade Federal do Espírito Santo (UFES) instacron:UFES |
| instname_str |
Universidade Federal do Espírito Santo (UFES) |
| instacron_str |
UFES |
| institution |
UFES |
| reponame_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
| collection |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES) |
| repository.mail.fl_str_mv |
riufes@ufes.br |
| _version_ |
1834479108883480576 |