Modelo hidrodinâmico para Quantum Free-electron lasers

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Monteiro, Luís Fernando
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Programa de Pós-graduação em Física
Física
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://app.uff.br/riuff/handle/1/19156
Resumo: Free-Electron Laser is today a very important área of research. These devices can generate high power of coherent radiation by releasing the energy of a relativistic electron beam into electromagnetic field energy. It works by injecting the relativistic beam into a devide called undulator (or wiggler), that consists of a magnetistatic field or, alternatively, a counterpropagating laser pulse (electromagnetic, or optical, unduladors). The wiggler forces the beam, that moves in a straight line at the beginning og interaction, to execute a wave movement and consequently it emits electromagnetic radiation. FELs are able to operate in a wide range of the electromagnetic spectrum, in wave-lengths are unreachable to convencional lasers. Such frequency flexibility is due to the fact that the coherent radiation wavelength, [lambda]r, is mainly determined by the beam energy and by the wiggler period, wich satisfies the approximate resonance condition [lambda]r = [lambda]w/4[gama]z^2, to optical wigglers, or [lambda]r = [lambda]w/2[gama]z^2, to magnetostatic wigglers, where [gama]z is the normalized longitudinal energy of the electron beam and [lambda]w is the wiggler period. It is well known the FELs theory was originally conceived in the framework of Quantum Mechanics by Madey and co-workers. In their notable work they calculated the radiation gain by using the Weizsäcker-Williams methid. Subsequently, it was shown that classical models could describe FELs equally well, if the one foton momentum recoil in not greater than the beam momentum spread, hence quantum effects can be neglected. Otherwise, Quantum-Mechanics effects can not neglected, and quantum models are necessary. In the last years it has been happening a great interest in the experimental realization of FELs based on optical on wigglers. The fact of operating in wavelenghs of the order of visible light or less, gives to a laser pulse the advantage of working as a very-small-period wiggler. Such device also has the advantage of working with a much lower energetic-beam, in the range of a few MeVs, instead of tens of GeVs by using a magnetostatic undulator, to FELs working in the range of X-Raysm for example. Then, laser wigglers might to make feasible the construction of low-dimension coherent radiation emission devices in the X-ray and Gama ray band (table-top X-Ray Free-Electron Lasers) based on Stimulaed Compton Backscattering. But it was showed that quantum effects might not be neglected in this domain of low-energy electron beam and high foton energy, and the FEL get into to work in a Quantum Regime. In this work we will present a hydrodynamical model to study Free-Electron Lasers that includes quantum effects. Starting from the electron total relativistic energy equation that includes a ponderomotive potencial term, we will deduce a equation to the electron eave-function evolution under the Slow-Vary Envelope Approximation (SVEA) hypotesis, which has the same shape as the Schrodinger equation. By using the Madelung transformation, we will deduce a sustem of fluid equations to the electron beam dynamic. The coupling of the electron beam fluid equations to the field ones will allow us to deduce a cubic dispersion relation that includes space-charge effects to the FEL instability. Subsequently we will show a ser of nonlinear quantum plasma fluid equations of coupled-mode type to quantumplasmas, which is able to describe a relativistic electron beam interacting with a stimulated radiation inside an optical wiggler under the assumption of the Slow-Varying Envelope Approximation. Numerical results will be showed at the end.
id UFF-2_d0dd97ce89db2bdcdb983b27acb906cc
oai_identifier_str oai:app.uff.br:1/19156
network_acronym_str UFF-2
network_name_str Repositório Institucional da Universidade Federal Fluminense (RIUFF)
repository_id_str
spelling Modelo hidrodinâmico para Quantum Free-electron lasersModelo hidrodinâmico Quantum Free Electron LaserTransformação de MadelungEquações de fluido laser de elétrons livresCNPQ::CIENCIAS EXATAS E DA TERRA::FISICAFree-Electron Laser is today a very important área of research. These devices can generate high power of coherent radiation by releasing the energy of a relativistic electron beam into electromagnetic field energy. It works by injecting the relativistic beam into a devide called undulator (or wiggler), that consists of a magnetistatic field or, alternatively, a counterpropagating laser pulse (electromagnetic, or optical, unduladors). The wiggler forces the beam, that moves in a straight line at the beginning og interaction, to execute a wave movement and consequently it emits electromagnetic radiation. FELs are able to operate in a wide range of the electromagnetic spectrum, in wave-lengths are unreachable to convencional lasers. Such frequency flexibility is due to the fact that the coherent radiation wavelength, [lambda]r, is mainly determined by the beam energy and by the wiggler period, wich satisfies the approximate resonance condition [lambda]r = [lambda]w/4[gama]z^2, to optical wigglers, or [lambda]r = [lambda]w/2[gama]z^2, to magnetostatic wigglers, where [gama]z is the normalized longitudinal energy of the electron beam and [lambda]w is the wiggler period. It is well known the FELs theory was originally conceived in the framework of Quantum Mechanics by Madey and co-workers. In their notable work they calculated the radiation gain by using the Weizsäcker-Williams methid. Subsequently, it was shown that classical models could describe FELs equally well, if the one foton momentum recoil in not greater than the beam momentum spread, hence quantum effects can be neglected. Otherwise, Quantum-Mechanics effects can not neglected, and quantum models are necessary. In the last years it has been happening a great interest in the experimental realization of FELs based on optical on wigglers. The fact of operating in wavelenghs of the order of visible light or less, gives to a laser pulse the advantage of working as a very-small-period wiggler. Such device also has the advantage of working with a much lower energetic-beam, in the range of a few MeVs, instead of tens of GeVs by using a magnetostatic undulator, to FELs working in the range of X-Raysm for example. Then, laser wigglers might to make feasible the construction of low-dimension coherent radiation emission devices in the X-ray and Gama ray band (table-top X-Ray Free-Electron Lasers) based on Stimulaed Compton Backscattering. But it was showed that quantum effects might not be neglected in this domain of low-energy electron beam and high foton energy, and the FEL get into to work in a Quantum Regime. In this work we will present a hydrodynamical model to study Free-Electron Lasers that includes quantum effects. Starting from the electron total relativistic energy equation that includes a ponderomotive potencial term, we will deduce a equation to the electron eave-function evolution under the Slow-Vary Envelope Approximation (SVEA) hypotesis, which has the same shape as the Schrodinger equation. By using the Madelung transformation, we will deduce a sustem of fluid equations to the electron beam dynamic. The coupling of the electron beam fluid equations to the field ones will allow us to deduce a cubic dispersion relation that includes space-charge effects to the FEL instability. Subsequently we will show a ser of nonlinear quantum plasma fluid equations of coupled-mode type to quantumplasmas, which is able to describe a relativistic electron beam interacting with a stimulated radiation inside an optical wiggler under the assumption of the Slow-Varying Envelope Approximation. Numerical results will be showed at the end.Lasers de Elétrons livres são hoje uma área muito ativa de pesquisa. Tais dispositivos podem gerar alta potência de radiação coerente convertendo a energia de um feixe de elétrons relativísticos em energia de campo eletromagnético. Para tanto o feixe é injetado em um ondulador (wiggler), que é e basicamente um campo magnetostático periódico ou, alternativamente, um pulso de laser em sentido contrário ao feixe (onduladores eletromagnéticos, ou ópticos). O wiggler obriga o feixe, inicialmente em movimento retilíneo, a oscilar e emitir radiação eletromagnética. Os FELs são capazes de operar em uma extensa banda do espectro eletromagnético, em comprimentos de onda que não são acessíveis aos lasers convencionais. Esta flexibilidade de frequência é devido ao fato de que o comprimento de onda da radiação coerente, [lambda]r, é principalmente determinada pela energia do feixe e pelo período do wiggler, que satisfaz a condição de ressonância aproximada [lambda]r = [lambda]w/4[gama]z^2, para wigglers ópticos, ou [lambda]r = [lambda]w/2[gama]z^2, para wigglers magnetostáticos, onde [gama]z é a energia normalizada longitudinal do feixe de elétrons e [lambda]w é período do wiggler. É bem conhecido que a teoria dos FELs foi originalmente concebida dentro da Mecânica Quântica por Madey e colaboradores. Em seu notável trabalho, eles calcularam o ganho de radiação usando o método de Weizsäcker-Williams. Subseqϋentemente, foi mostrado que modelos clássicos podiam descrever os FELs igualmente bem, desde que o momento de recoil de um fóton não fosse maior que o momento de spread do feixe, caso em que Mecânica Quântica não poderia ser desprezada, e modelos quânticos seriam necessários. Nos últimos anos tem havido grande interesse na realização experimental de FELs baseados em wigglers ópticos. O fato de operarem em comprimentos de onda da ordem da luz visível ou menor dá aos lasers a vantagem de funcionarem como wigglers de período muito curto. Esse mecanismo tem a vantagem de utilizar feixes de elétrons bem menos energéticos, na casa dos poucos MeVs contra dezenas de GeVs do wiggler magnetostático, para FELs operando na casa dos Raios-X, por exemplo. Assim, wigglers por laser poderiam viabilizar a construção de dispositivos emissores de Radiação X e Gama coerentes com dimensões bastante reduzidas (Table-top X-Ray Free-Electron Lasers), baseados no espalhamento Compton estimulado (Stimulated Compton Backscattering). Porém, restou provado que efeitos quânticos não poderiam ser desprezados nesse domínio de feixe de baixa energia e fótons de alta energia, passando o FEL a operar no regime Quântico. Neste trabalho apresentaremos um modelo hidrodinâmico para Free-Electron Lasers que incorpora efeitos quânticos. Partindo da equação da energia relativística total do elétron sujeito a um potencial ponderomotivo, sob a hipótese de envelope lentamente variável, deduziremos uma equação para a evolução da função de onda do elétron que tem a forma da equação de Schrödinger. Por uma transformação de Madelung deduziremos um sistema de equações de fluido para a dinâmica do feixe de elétrons. O acoplamento com as equações de campo nos permitirá deduzir uma relação de dispersão cúbica que inclui efeitos de cargas espaciais para a instabilidade, e subseqüentemente deduziremos um conjunto de equações de fluido não lineares tipo coupled mode para plasma quântico, capazes de descrever um feixe de elétrons relativísticos interagindo com a radiação estimulada em um wiggler óptico sob a aproximação de envelope lentamente variável (SVEA). Resultados numéricos serão apresentados ao final.Programa de Pós-graduação em FísicaFísicaSerbeto, Antonio de Padua BritoCPF:23604033222http://lattes.cnpq.br/0748079503310131Monteiro, Luís Fernando2021-03-10T20:46:38Z2011-04-202021-03-10T20:46:38Z2010-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://app.uff.br/riuff/handle/1/19156porCC-BY-SAinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF)instname:Universidade Federal Fluminense (UFF)instacron:UFF2021-03-10T20:46:38Zoai:app.uff.br:1/19156Repositório InstitucionalPUBhttps://app.uff.br/oai/requestriuff@id.uff.bropendoar:21202021-03-10T20:46:38Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF)false
dc.title.none.fl_str_mv Modelo hidrodinâmico para Quantum Free-electron lasers
title Modelo hidrodinâmico para Quantum Free-electron lasers
spellingShingle Modelo hidrodinâmico para Quantum Free-electron lasers
Monteiro, Luís Fernando
Modelo hidrodinâmico Quantum Free Electron Laser
Transformação de Madelung
Equações de fluido laser de elétrons livres
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
title_short Modelo hidrodinâmico para Quantum Free-electron lasers
title_full Modelo hidrodinâmico para Quantum Free-electron lasers
title_fullStr Modelo hidrodinâmico para Quantum Free-electron lasers
title_full_unstemmed Modelo hidrodinâmico para Quantum Free-electron lasers
title_sort Modelo hidrodinâmico para Quantum Free-electron lasers
author Monteiro, Luís Fernando
author_facet Monteiro, Luís Fernando
author_role author
dc.contributor.none.fl_str_mv Serbeto, Antonio de Padua Brito
CPF:23604033222
http://lattes.cnpq.br/0748079503310131
dc.contributor.author.fl_str_mv Monteiro, Luís Fernando
dc.subject.por.fl_str_mv Modelo hidrodinâmico Quantum Free Electron Laser
Transformação de Madelung
Equações de fluido laser de elétrons livres
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
topic Modelo hidrodinâmico Quantum Free Electron Laser
Transformação de Madelung
Equações de fluido laser de elétrons livres
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
description Free-Electron Laser is today a very important área of research. These devices can generate high power of coherent radiation by releasing the energy of a relativistic electron beam into electromagnetic field energy. It works by injecting the relativistic beam into a devide called undulator (or wiggler), that consists of a magnetistatic field or, alternatively, a counterpropagating laser pulse (electromagnetic, or optical, unduladors). The wiggler forces the beam, that moves in a straight line at the beginning og interaction, to execute a wave movement and consequently it emits electromagnetic radiation. FELs are able to operate in a wide range of the electromagnetic spectrum, in wave-lengths are unreachable to convencional lasers. Such frequency flexibility is due to the fact that the coherent radiation wavelength, [lambda]r, is mainly determined by the beam energy and by the wiggler period, wich satisfies the approximate resonance condition [lambda]r = [lambda]w/4[gama]z^2, to optical wigglers, or [lambda]r = [lambda]w/2[gama]z^2, to magnetostatic wigglers, where [gama]z is the normalized longitudinal energy of the electron beam and [lambda]w is the wiggler period. It is well known the FELs theory was originally conceived in the framework of Quantum Mechanics by Madey and co-workers. In their notable work they calculated the radiation gain by using the Weizsäcker-Williams methid. Subsequently, it was shown that classical models could describe FELs equally well, if the one foton momentum recoil in not greater than the beam momentum spread, hence quantum effects can be neglected. Otherwise, Quantum-Mechanics effects can not neglected, and quantum models are necessary. In the last years it has been happening a great interest in the experimental realization of FELs based on optical on wigglers. The fact of operating in wavelenghs of the order of visible light or less, gives to a laser pulse the advantage of working as a very-small-period wiggler. Such device also has the advantage of working with a much lower energetic-beam, in the range of a few MeVs, instead of tens of GeVs by using a magnetostatic undulator, to FELs working in the range of X-Raysm for example. Then, laser wigglers might to make feasible the construction of low-dimension coherent radiation emission devices in the X-ray and Gama ray band (table-top X-Ray Free-Electron Lasers) based on Stimulaed Compton Backscattering. But it was showed that quantum effects might not be neglected in this domain of low-energy electron beam and high foton energy, and the FEL get into to work in a Quantum Regime. In this work we will present a hydrodynamical model to study Free-Electron Lasers that includes quantum effects. Starting from the electron total relativistic energy equation that includes a ponderomotive potencial term, we will deduce a equation to the electron eave-function evolution under the Slow-Vary Envelope Approximation (SVEA) hypotesis, which has the same shape as the Schrodinger equation. By using the Madelung transformation, we will deduce a sustem of fluid equations to the electron beam dynamic. The coupling of the electron beam fluid equations to the field ones will allow us to deduce a cubic dispersion relation that includes space-charge effects to the FEL instability. Subsequently we will show a ser of nonlinear quantum plasma fluid equations of coupled-mode type to quantumplasmas, which is able to describe a relativistic electron beam interacting with a stimulated radiation inside an optical wiggler under the assumption of the Slow-Varying Envelope Approximation. Numerical results will be showed at the end.
publishDate 2010
dc.date.none.fl_str_mv 2010-01-01
2011-04-20
2021-03-10T20:46:38Z
2021-03-10T20:46:38Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://app.uff.br/riuff/handle/1/19156
url https://app.uff.br/riuff/handle/1/19156
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv CC-BY-SA
info:eu-repo/semantics/openAccess
rights_invalid_str_mv CC-BY-SA
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Programa de Pós-graduação em Física
Física
publisher.none.fl_str_mv Programa de Pós-graduação em Física
Física
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF)
instname:Universidade Federal Fluminense (UFF)
instacron:UFF
instname_str Universidade Federal Fluminense (UFF)
instacron_str UFF
institution UFF
reponame_str Repositório Institucional da Universidade Federal Fluminense (RIUFF)
collection Repositório Institucional da Universidade Federal Fluminense (RIUFF)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF)
repository.mail.fl_str_mv riuff@id.uff.br
_version_ 1797038179776200704