Técnicas de reamostragem e super-resolução em imagens de culturas agrícolas

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Nogueira, Emília Alves lattes
Orientador(a): Soares, Fabrízzio Alphonsus Alves de Melo Nunes lattes
Banca de defesa: Soares, Fabrizzio Alphonsus Alves de Melo Nunes, Pedrini, Helio, Cabacinha, Christian Dias, Costa, Ronaldo Martins da, Fernandes, Deborah Silva Alves
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
dARK ID: ark:/38995/001300000g97c
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Ciência da Computação (INF)
Departamento: Instituto de Informática - INF (RMG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/14157
Resumo: The increasing demand for food, coupled with climate change, has driven the development of agricultural monitoring technologies to increase the efficiency and sustainability of crop production such as sugarcane and corn. However, the low resolution of images captured by Unmanned Aerial Vehicle (UAV) and satellites limits the detailed analysis of essential agronomic features. This thesis investigates methods to improve the resolution of agricultural images, comparing Traditional Resampling Techniques (TRT) with Super-Resolution with Deep Networks (SRDN) algorithms, such as Real Enhanced Super-Resolution Generative Adversarial Network (Real-ESRGAN), Multi-Level upscaling Transform (MuLUT) and Learning Resampling Function (LeRF). The aim of this study is to investigate the application of deep learning techniques to improve the resolution of agricultural images. For this purpose, existing methods were reviewed and an agricultural dataset was prepared. The research adopted an experimental approach, evaluating the methods quantitatively using metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM), and qualitatively by visual analysis. The experiments demonstrate significant improvements in image resolution using the SRDN algorithms compared to TRT, with gains of 484.34% in sugarcane images, 234.4% in corn, and 58.57% in satellite images. Although the SRDN techniques were developed for other purposes, such as improving the resolution of images of people and anime, their performance can be observed in agricultural images. The results obtained are significant for precision agriculture, since the increase in image resolution can aid in monitoring plant growth and health, providing faster and more effective interventions. In future investigations, we hope to expand the comparisons with other SRDN algorithms.
id UFG-2_17994e1b3b4a11d1ffde27008e0b5752
oai_identifier_str oai:repositorio.bc.ufg.br:tede/14157
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Soares, Fabrízzio Alphonsus Alves de Melo Nuneshttp://lattes.cnpq.br/7206645857721831Soares, Fabrizzio Alphonsus Alves de Melo NunesPedrini, HelioCabacinha, Christian DiasCosta, Ronaldo Martins daFernandes, Deborah Silva Alveshttp://lattes.cnpq.br/0949189985325862Nogueira, Emília Alves2025-04-23T19:38:03Z2025-04-23T19:38:03Z2025-02-28NOGUEIRA, E. A. Técnicas de reamostragem e super-resolução em imagens de culturas agrícolas. 2025. 110 f. Tese (Doutorado em Ciência da Computação) - Instituto de Informática, Universidade Federal de Goiás, Goiânia, 2025.http://repositorio.bc.ufg.br/tede/handle/tede/14157ark:/38995/001300000g97cThe increasing demand for food, coupled with climate change, has driven the development of agricultural monitoring technologies to increase the efficiency and sustainability of crop production such as sugarcane and corn. However, the low resolution of images captured by Unmanned Aerial Vehicle (UAV) and satellites limits the detailed analysis of essential agronomic features. This thesis investigates methods to improve the resolution of agricultural images, comparing Traditional Resampling Techniques (TRT) with Super-Resolution with Deep Networks (SRDN) algorithms, such as Real Enhanced Super-Resolution Generative Adversarial Network (Real-ESRGAN), Multi-Level upscaling Transform (MuLUT) and Learning Resampling Function (LeRF). The aim of this study is to investigate the application of deep learning techniques to improve the resolution of agricultural images. For this purpose, existing methods were reviewed and an agricultural dataset was prepared. The research adopted an experimental approach, evaluating the methods quantitatively using metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM), and qualitatively by visual analysis. The experiments demonstrate significant improvements in image resolution using the SRDN algorithms compared to TRT, with gains of 484.34% in sugarcane images, 234.4% in corn, and 58.57% in satellite images. Although the SRDN techniques were developed for other purposes, such as improving the resolution of images of people and anime, their performance can be observed in agricultural images. The results obtained are significant for precision agriculture, since the increase in image resolution can aid in monitoring plant growth and health, providing faster and more effective interventions. In future investigations, we hope to expand the comparisons with other SRDN algorithms.A crescente demanda por alimentos, associada às mudanças climáticas, tem impulsionado o desenvolvimento de tecnologias de monitoramento agrícola para aumentar a eficiência e a sustentabilidade da produção de culturas como cana-de-açúcar e milho. No entanto, a baixa resolução das imagens capturadas por Veículo Aéreo Não Tripulado (VANT) e satélites limita a análise detalhada de características agronômicas essenciais. Esta tese investiga métodos para melhorar a resolução de imagens agrícolas, comparando as Técnicas Tradicionais de Reamostragem (TTR) com algoritmos de Super-Resolução com Redes Profundas (SRRP), como Real Enhanced Super-Resolution Generative Adversarial Network (Real-ESRGAN), Multi-Level upscaling Transform (MuLUT) e Learning Resampling Function (LeRF). O objetivo deste estudo é investigar a aplicação de técnicas de aprendizado profundo para melhorar a resolução de imagens agrícolas. Para isso, foram revisados os métodos existentes e preparado o conjunto de dados agrícola. A pesquisa adotou uma abordagem experimental, avaliando os métodos quantitativamente usando métricas como o Peak Signal-to-Noise Ratio (PSNR) e Structural Similarity Index (SSIM), e qualitativamente por análise visual. Os experimentos demonstram melhorias significativas na resolução das imagens usando os algoritmos de SRRP em comparação aos TTR, com ganhos de 484,34% nas imagens de cana-de-açúcar, 234,4% no milho e 58,57% nas imagens de satélite. Embora as técnicas de SRRP tenham sido desenvolvidas para outros propósitos, como melhorar a resolução de imagens de pessoas e animes, seu desempenho pode ser observado em imagens agrícolas. Os resultados obtidos são significativos para a agricultura de precisão, pois o aumento da resolução das imagens pode auxiliar no monitoramento do crescimento e da saúde das plantas, proporcionando intervenções mais rápidas e efetivas. Em investigações futuras, esperamos ampliar as comparações com outros algoritmos de SRRP.Fundação de Amparo à Pesquisa do Estado de GoiásUniversidade Federal de GoiásPrograma de Pós-graduação em Ciência da Computação (INF)UFGBrasilInstituto de Informática - INF (RMG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessReamostragemSuper resoluçãoAprendizado profundoUAVsSatéliteCana-de- açúcarMilhoResamplingSuper resolutionDeep learningSatelliteSugarcaneCornCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOTécnicas de reamostragem e super-resolução em imagens de culturas agrícolasResampling and super-resolution techniques in agricultural crop imagesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisporreponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.bc.ufg.br/tede/bitstreams/85b8b5e8-dd8d-4217-8314-1315977fc3f5/download8a4605be74aa9ea9d79846c1fba20a33MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.bc.ufg.br/tede/bitstreams/202f2d32-b1fc-4da6-8cf6-3ace8abb8d02/download4460e5956bc1d1639be9ae6146a50347MD53ORIGINALTese - Emília Alves Nogueira - 2025.pdfTese - Emília Alves Nogueira - 2025.pdfapplication/pdf36278297http://repositorio.bc.ufg.br/tede/bitstreams/f3f16224-11f9-43c7-991e-e303a5231c17/downloadb92058ad7bcebd7b64875f60c9347153MD54tede/141572025-04-23 16:38:03.815http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/14157http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttps://repositorio.bc.ufg.br/tedeserver/oai/requestgrt.bc@ufg.bropendoar:oai:repositorio.bc.ufg.br:tede/12342025-04-23T19:38:03Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
dc.title.none.fl_str_mv Técnicas de reamostragem e super-resolução em imagens de culturas agrícolas
dc.title.alternative.eng.fl_str_mv Resampling and super-resolution techniques in agricultural crop images
title Técnicas de reamostragem e super-resolução em imagens de culturas agrícolas
spellingShingle Técnicas de reamostragem e super-resolução em imagens de culturas agrícolas
Nogueira, Emília Alves
Reamostragem
Super resolução
Aprendizado profundo
UAVs
Satélite
Cana-de- açúcar
Milho
Resampling
Super resolution
Deep learning
Satellite
Sugarcane
Corn
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Técnicas de reamostragem e super-resolução em imagens de culturas agrícolas
title_full Técnicas de reamostragem e super-resolução em imagens de culturas agrícolas
title_fullStr Técnicas de reamostragem e super-resolução em imagens de culturas agrícolas
title_full_unstemmed Técnicas de reamostragem e super-resolução em imagens de culturas agrícolas
title_sort Técnicas de reamostragem e super-resolução em imagens de culturas agrícolas
author Nogueira, Emília Alves
author_facet Nogueira, Emília Alves
author_role author
dc.contributor.advisor1.fl_str_mv Soares, Fabrízzio Alphonsus Alves de Melo Nunes
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/7206645857721831
dc.contributor.referee1.fl_str_mv Soares, Fabrizzio Alphonsus Alves de Melo Nunes
dc.contributor.referee2.fl_str_mv Pedrini, Helio
dc.contributor.referee3.fl_str_mv Cabacinha, Christian Dias
dc.contributor.referee4.fl_str_mv Costa, Ronaldo Martins da
dc.contributor.referee5.fl_str_mv Fernandes, Deborah Silva Alves
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/0949189985325862
dc.contributor.author.fl_str_mv Nogueira, Emília Alves
contributor_str_mv Soares, Fabrízzio Alphonsus Alves de Melo Nunes
Soares, Fabrizzio Alphonsus Alves de Melo Nunes
Pedrini, Helio
Cabacinha, Christian Dias
Costa, Ronaldo Martins da
Fernandes, Deborah Silva Alves
dc.subject.por.fl_str_mv Reamostragem
Super resolução
Aprendizado profundo
UAVs
Satélite
Cana-de- açúcar
Milho
topic Reamostragem
Super resolução
Aprendizado profundo
UAVs
Satélite
Cana-de- açúcar
Milho
Resampling
Super resolution
Deep learning
Satellite
Sugarcane
Corn
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.eng.fl_str_mv Resampling
Super resolution
Deep learning
Satellite
Sugarcane
Corn
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description The increasing demand for food, coupled with climate change, has driven the development of agricultural monitoring technologies to increase the efficiency and sustainability of crop production such as sugarcane and corn. However, the low resolution of images captured by Unmanned Aerial Vehicle (UAV) and satellites limits the detailed analysis of essential agronomic features. This thesis investigates methods to improve the resolution of agricultural images, comparing Traditional Resampling Techniques (TRT) with Super-Resolution with Deep Networks (SRDN) algorithms, such as Real Enhanced Super-Resolution Generative Adversarial Network (Real-ESRGAN), Multi-Level upscaling Transform (MuLUT) and Learning Resampling Function (LeRF). The aim of this study is to investigate the application of deep learning techniques to improve the resolution of agricultural images. For this purpose, existing methods were reviewed and an agricultural dataset was prepared. The research adopted an experimental approach, evaluating the methods quantitatively using metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM), and qualitatively by visual analysis. The experiments demonstrate significant improvements in image resolution using the SRDN algorithms compared to TRT, with gains of 484.34% in sugarcane images, 234.4% in corn, and 58.57% in satellite images. Although the SRDN techniques were developed for other purposes, such as improving the resolution of images of people and anime, their performance can be observed in agricultural images. The results obtained are significant for precision agriculture, since the increase in image resolution can aid in monitoring plant growth and health, providing faster and more effective interventions. In future investigations, we hope to expand the comparisons with other SRDN algorithms.
publishDate 2025
dc.date.accessioned.fl_str_mv 2025-04-23T19:38:03Z
dc.date.available.fl_str_mv 2025-04-23T19:38:03Z
dc.date.issued.fl_str_mv 2025-02-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv NOGUEIRA, E. A. Técnicas de reamostragem e super-resolução em imagens de culturas agrícolas. 2025. 110 f. Tese (Doutorado em Ciência da Computação) - Instituto de Informática, Universidade Federal de Goiás, Goiânia, 2025.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/14157
dc.identifier.dark.fl_str_mv ark:/38995/001300000g97c
identifier_str_mv NOGUEIRA, E. A. Técnicas de reamostragem e super-resolução em imagens de culturas agrícolas. 2025. 110 f. Tese (Doutorado em Ciência da Computação) - Instituto de Informática, Universidade Federal de Goiás, Goiânia, 2025.
ark:/38995/001300000g97c
url http://repositorio.bc.ufg.br/tede/handle/tede/14157
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Ciência da Computação (INF)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Informática - INF (RMG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/85b8b5e8-dd8d-4217-8314-1315977fc3f5/download
http://repositorio.bc.ufg.br/tede/bitstreams/202f2d32-b1fc-4da6-8cf6-3ace8abb8d02/download
http://repositorio.bc.ufg.br/tede/bitstreams/f3f16224-11f9-43c7-991e-e303a5231c17/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
4460e5956bc1d1639be9ae6146a50347
b92058ad7bcebd7b64875f60c9347153
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv grt.bc@ufg.br
_version_ 1846536729188630528