Exportação concluída — 

Optimization methods on Riemannian manifolds with lower bound curvature: gradient for scalar and multi-objective functions and subgradient for scalar functions

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Louzeiro, Maurício Silva lattes
Orientador(a): Ferreira, Orizon Pereira lattes
Banca de defesa: Ferreira, Orizon Pereira, Bento, Glaydston de Carvalho, Cruz Neto, João Xavier da, Santos, Paulo Sérgio Marques dos, Perez, Luis Roman Lucambio
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
dARK ID: ark:/38995/0013000008vw7
Idioma: eng
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Matemática (IME)
Departamento: Instituto de Matemática e Estatística - IME (RG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/9333
Resumo: Let M a Riemannian manifolds with lower bounded curvature. In this thesis, we consider first-order iterative methods to solve optimization problems on M. The gradient method to solve the problem min{f(p) : p M}, where f : M → R is a continuously differentiable convex function is presented with Lipschitz step-size, adaptive step-size and Armijo’s step-size. The first procedure requires that the objective function has Lipschitz continuous gradient, which is not necessary for the other approaches. Convergence of the whole sequence to a minimizer, without any level set boundedness assumption, is proved. Iteration-complexity bound for functions with Lipschitz continuous gradient is also presented. In addition, all these approaches are considered in the multiobjective setting. Here we also consider the subgradient method to solve the problem min{f(p) : p M}, where f : M → R is a convex function. Iteration-complexity bounds of the subgradient method with exogenous step-size and Polyak’s step size are stablished, completing and improving recent results on the subject. Finally, some examples and numerical experiments are presented.
id UFG-2_1b2f32d05b1f6a7eeffac94d0025c7e8
oai_identifier_str oai:repositorio.bc.ufg.br:tede/9333
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Ferreira, Orizon Pereirahttp://lattes.cnpq.br/0201145506453251Prudente, Leandro da Fonsecahttp://lattes.cnpq.br/4573611419840935Ferreira, Orizon PereiraBento, Glaydston de CarvalhoCruz Neto, João Xavier daSantos, Paulo Sérgio Marques dosPerez, Luis Roman Lucambiohttp://lattes.cnpq.br/3049272965306538Louzeiro, Maurício Silva2019-03-13T10:22:49Z2019-02-26LOUZEIRO, M. S. Optimization methods on Riemannian manifolds with lower bound curvature: gradient for scalar and multi-objective functions and subgradient for scalar functions. 2019. 83 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2019.http://repositorio.bc.ufg.br/tede/handle/tede/9333ark:/38995/0013000008vw7Let M a Riemannian manifolds with lower bounded curvature. In this thesis, we consider first-order iterative methods to solve optimization problems on M. The gradient method to solve the problem min{f(p) : p M}, where f : M → R is a continuously differentiable convex function is presented with Lipschitz step-size, adaptive step-size and Armijo’s step-size. The first procedure requires that the objective function has Lipschitz continuous gradient, which is not necessary for the other approaches. Convergence of the whole sequence to a minimizer, without any level set boundedness assumption, is proved. Iteration-complexity bound for functions with Lipschitz continuous gradient is also presented. In addition, all these approaches are considered in the multiobjective setting. Here we also consider the subgradient method to solve the problem min{f(p) : p M}, where f : M → R is a convex function. Iteration-complexity bounds of the subgradient method with exogenous step-size and Polyak’s step size are stablished, completing and improving recent results on the subject. Finally, some examples and numerical experiments are presented.Seja M uma variedade Riemanniana com curvatura limitada inferiormente. Nesta tese, consideramos métodos iterativos de primeira ordem para resolver problemas de otimização sobre variedades Riemannianas com curvatura limitada inferiormente. O método do gradiente para resolver o problema min{f(p) : p M}, onde f : M → R é uma função convexa continuamente diferenciável, é apresentado com tamanho de passo Lipshitz, tamanho de passo adaptativo e tamanho de passo de Armijo. O primeiro tipo de passo requer que a função objetivo tenha gradiente continuamente Lipshitz, o que não é necessário para os outros. A convergência total da sequência para um minimizador, sem qualquer hipótese de limitação do conjunto de nível, é provada. Limitantes para a complexidade na iteração para funções com gradiente continuamente Lipschitz também são apresentados. Além disso, todas essas abordagens são consideradas no contexto de otimização multiobjetivo. Aqui também consideramos o método do subgradiente para resolver o problema min{f(p) : p M}, onde f : M → R é uma função convexa. Limitantes para a complexidade na iteração do método do subgradiente com tamanho de passo exógeno e tamanho de passo de Polyak são estabelecidos, completando e melhorando os resultados recentes sobre o assunto. Finalmente, alguns exemplos e experimentos numéricos são apresentados.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfengUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessOptimization methodsConvex programmingRiemannian manifoldLower bounded curvatureComplexityMétodos de otimizaçãoProgramação convexaVariedade RiemmanianaCurvatura limitada inferiormenteComplexidadeCIENCIAS EXATAS E DA TERRA::MATEMATICAOptimization methods on Riemannian manifolds with lower bound curvature: gradient for scalar and multi-objective functions and subgradient for scalar functionsMétodos de otimização sobre variedades Riemannianas com curvatura limitada inferiormente: gradiente para funções escalares e multi-objetivo e subgradiente para funções escalaresinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis6600717948137941247600600600600-4268777512335152015-70908234179844016942075167498588264571reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/eaafc4e9-30a1-4114-b8bd-a1d7b1ecf5aa/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/103850f9-eb5d-46d1-9a2b-e573ecd57413/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/9a9d7d2d-e254-4816-99ff-cc75efe17ae2/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/1c9f5cff-148e-4a1c-be5f-529ac62581d5/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALTese - Maurício Silva Louzeiro - 2019.pdfTese - Maurício Silva Louzeiro - 2019.pdfapplication/pdf1655384http://repositorio.bc.ufg.br/tede/bitstreams/206b2654-5f3b-4c8a-8b69-90f260823ca5/downloada168bf697d30c99e45d2e9d19b65a563MD55tede/93332019-03-13 07:22:49.377http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/9333http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttps://repositorio.bc.ufg.br/tedeserver/oai/requestgrt.bc@ufg.bropendoar:oai:repositorio.bc.ufg.br:tede/12342019-03-13T10:22:49Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.eng.fl_str_mv Optimization methods on Riemannian manifolds with lower bound curvature: gradient for scalar and multi-objective functions and subgradient for scalar functions
dc.title.alternative.por.fl_str_mv Métodos de otimização sobre variedades Riemannianas com curvatura limitada inferiormente: gradiente para funções escalares e multi-objetivo e subgradiente para funções escalares
title Optimization methods on Riemannian manifolds with lower bound curvature: gradient for scalar and multi-objective functions and subgradient for scalar functions
spellingShingle Optimization methods on Riemannian manifolds with lower bound curvature: gradient for scalar and multi-objective functions and subgradient for scalar functions
Louzeiro, Maurício Silva
Optimization methods
Convex programming
Riemannian manifold
Lower bounded curvature
Complexity
Métodos de otimização
Programação convexa
Variedade Riemmaniana
Curvatura limitada inferiormente
Complexidade
CIENCIAS EXATAS E DA TERRA::MATEMATICA
title_short Optimization methods on Riemannian manifolds with lower bound curvature: gradient for scalar and multi-objective functions and subgradient for scalar functions
title_full Optimization methods on Riemannian manifolds with lower bound curvature: gradient for scalar and multi-objective functions and subgradient for scalar functions
title_fullStr Optimization methods on Riemannian manifolds with lower bound curvature: gradient for scalar and multi-objective functions and subgradient for scalar functions
title_full_unstemmed Optimization methods on Riemannian manifolds with lower bound curvature: gradient for scalar and multi-objective functions and subgradient for scalar functions
title_sort Optimization methods on Riemannian manifolds with lower bound curvature: gradient for scalar and multi-objective functions and subgradient for scalar functions
author Louzeiro, Maurício Silva
author_facet Louzeiro, Maurício Silva
author_role author
dc.contributor.advisor1.fl_str_mv Ferreira, Orizon Pereira
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0201145506453251
dc.contributor.advisor-co1.fl_str_mv Prudente, Leandro da Fonseca
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/4573611419840935
dc.contributor.referee1.fl_str_mv Ferreira, Orizon Pereira
dc.contributor.referee2.fl_str_mv Bento, Glaydston de Carvalho
dc.contributor.referee3.fl_str_mv Cruz Neto, João Xavier da
dc.contributor.referee4.fl_str_mv Santos, Paulo Sérgio Marques dos
dc.contributor.referee5.fl_str_mv Perez, Luis Roman Lucambio
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/3049272965306538
dc.contributor.author.fl_str_mv Louzeiro, Maurício Silva
contributor_str_mv Ferreira, Orizon Pereira
Prudente, Leandro da Fonseca
Ferreira, Orizon Pereira
Bento, Glaydston de Carvalho
Cruz Neto, João Xavier da
Santos, Paulo Sérgio Marques dos
Perez, Luis Roman Lucambio
dc.subject.eng.fl_str_mv Optimization methods
Convex programming
Riemannian manifold
Lower bounded curvature
Complexity
topic Optimization methods
Convex programming
Riemannian manifold
Lower bounded curvature
Complexity
Métodos de otimização
Programação convexa
Variedade Riemmaniana
Curvatura limitada inferiormente
Complexidade
CIENCIAS EXATAS E DA TERRA::MATEMATICA
dc.subject.por.fl_str_mv Métodos de otimização
Programação convexa
Variedade Riemmaniana
Curvatura limitada inferiormente
Complexidade
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::MATEMATICA
description Let M a Riemannian manifolds with lower bounded curvature. In this thesis, we consider first-order iterative methods to solve optimization problems on M. The gradient method to solve the problem min{f(p) : p M}, where f : M → R is a continuously differentiable convex function is presented with Lipschitz step-size, adaptive step-size and Armijo’s step-size. The first procedure requires that the objective function has Lipschitz continuous gradient, which is not necessary for the other approaches. Convergence of the whole sequence to a minimizer, without any level set boundedness assumption, is proved. Iteration-complexity bound for functions with Lipschitz continuous gradient is also presented. In addition, all these approaches are considered in the multiobjective setting. Here we also consider the subgradient method to solve the problem min{f(p) : p M}, where f : M → R is a convex function. Iteration-complexity bounds of the subgradient method with exogenous step-size and Polyak’s step size are stablished, completing and improving recent results on the subject. Finally, some examples and numerical experiments are presented.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-03-13T10:22:49Z
dc.date.issued.fl_str_mv 2019-02-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv LOUZEIRO, M. S. Optimization methods on Riemannian manifolds with lower bound curvature: gradient for scalar and multi-objective functions and subgradient for scalar functions. 2019. 83 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2019.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/9333
dc.identifier.dark.fl_str_mv ark:/38995/0013000008vw7
identifier_str_mv LOUZEIRO, M. S. Optimization methods on Riemannian manifolds with lower bound curvature: gradient for scalar and multi-objective functions and subgradient for scalar functions. 2019. 83 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2019.
ark:/38995/0013000008vw7
url http://repositorio.bc.ufg.br/tede/handle/tede/9333
dc.language.iso.fl_str_mv eng
language eng
dc.relation.program.fl_str_mv 6600717948137941247
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -4268777512335152015
dc.relation.cnpq.fl_str_mv -7090823417984401694
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Matemática (IME)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Matemática e Estatística - IME (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/eaafc4e9-30a1-4114-b8bd-a1d7b1ecf5aa/download
http://repositorio.bc.ufg.br/tede/bitstreams/103850f9-eb5d-46d1-9a2b-e573ecd57413/download
http://repositorio.bc.ufg.br/tede/bitstreams/9a9d7d2d-e254-4816-99ff-cc75efe17ae2/download
http://repositorio.bc.ufg.br/tede/bitstreams/1c9f5cff-148e-4a1c-be5f-529ac62581d5/download
http://repositorio.bc.ufg.br/tede/bitstreams/206b2654-5f3b-4c8a-8b69-90f260823ca5/download
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
a168bf697d30c99e45d2e9d19b65a563
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv grt.bc@ufg.br
_version_ 1846536699389149184