Optimization methods on Riemannian manifolds with lower bound curvature: gradient for scalar and multi-objective functions and subgradient for scalar functions
| Ano de defesa: | 2019 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | , , , , |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| dARK ID: | ark:/38995/0013000008vw7 |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de Goiás
|
| Programa de Pós-Graduação: |
Programa de Pós-graduação em Matemática (IME)
|
| Departamento: |
Instituto de Matemática e Estatística - IME (RG)
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | http://repositorio.bc.ufg.br/tede/handle/tede/9333 |
Resumo: | Let M a Riemannian manifolds with lower bounded curvature. In this thesis, we consider first-order iterative methods to solve optimization problems on M. The gradient method to solve the problem min{f(p) : p M}, where f : M → R is a continuously differentiable convex function is presented with Lipschitz step-size, adaptive step-size and Armijo’s step-size. The first procedure requires that the objective function has Lipschitz continuous gradient, which is not necessary for the other approaches. Convergence of the whole sequence to a minimizer, without any level set boundedness assumption, is proved. Iteration-complexity bound for functions with Lipschitz continuous gradient is also presented. In addition, all these approaches are considered in the multiobjective setting. Here we also consider the subgradient method to solve the problem min{f(p) : p M}, where f : M → R is a convex function. Iteration-complexity bounds of the subgradient method with exogenous step-size and Polyak’s step size are stablished, completing and improving recent results on the subject. Finally, some examples and numerical experiments are presented. |
| id |
UFG-2_1b2f32d05b1f6a7eeffac94d0025c7e8 |
|---|---|
| oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/9333 |
| network_acronym_str |
UFG-2 |
| network_name_str |
Repositório Institucional da UFG |
| repository_id_str |
|
| spelling |
Ferreira, Orizon Pereirahttp://lattes.cnpq.br/0201145506453251Prudente, Leandro da Fonsecahttp://lattes.cnpq.br/4573611419840935Ferreira, Orizon PereiraBento, Glaydston de CarvalhoCruz Neto, João Xavier daSantos, Paulo Sérgio Marques dosPerez, Luis Roman Lucambiohttp://lattes.cnpq.br/3049272965306538Louzeiro, Maurício Silva2019-03-13T10:22:49Z2019-02-26LOUZEIRO, M. S. Optimization methods on Riemannian manifolds with lower bound curvature: gradient for scalar and multi-objective functions and subgradient for scalar functions. 2019. 83 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2019.http://repositorio.bc.ufg.br/tede/handle/tede/9333ark:/38995/0013000008vw7Let M a Riemannian manifolds with lower bounded curvature. In this thesis, we consider first-order iterative methods to solve optimization problems on M. The gradient method to solve the problem min{f(p) : p M}, where f : M → R is a continuously differentiable convex function is presented with Lipschitz step-size, adaptive step-size and Armijo’s step-size. The first procedure requires that the objective function has Lipschitz continuous gradient, which is not necessary for the other approaches. Convergence of the whole sequence to a minimizer, without any level set boundedness assumption, is proved. Iteration-complexity bound for functions with Lipschitz continuous gradient is also presented. In addition, all these approaches are considered in the multiobjective setting. Here we also consider the subgradient method to solve the problem min{f(p) : p M}, where f : M → R is a convex function. Iteration-complexity bounds of the subgradient method with exogenous step-size and Polyak’s step size are stablished, completing and improving recent results on the subject. Finally, some examples and numerical experiments are presented.Seja M uma variedade Riemanniana com curvatura limitada inferiormente. Nesta tese, consideramos métodos iterativos de primeira ordem para resolver problemas de otimização sobre variedades Riemannianas com curvatura limitada inferiormente. O método do gradiente para resolver o problema min{f(p) : p M}, onde f : M → R é uma função convexa continuamente diferenciável, é apresentado com tamanho de passo Lipshitz, tamanho de passo adaptativo e tamanho de passo de Armijo. O primeiro tipo de passo requer que a função objetivo tenha gradiente continuamente Lipshitz, o que não é necessário para os outros. A convergência total da sequência para um minimizador, sem qualquer hipótese de limitação do conjunto de nível, é provada. Limitantes para a complexidade na iteração para funções com gradiente continuamente Lipschitz também são apresentados. Além disso, todas essas abordagens são consideradas no contexto de otimização multiobjetivo. Aqui também consideramos o método do subgradiente para resolver o problema min{f(p) : p M}, onde f : M → R é uma função convexa. Limitantes para a complexidade na iteração do método do subgradiente com tamanho de passo exógeno e tamanho de passo de Polyak são estabelecidos, completando e melhorando os resultados recentes sobre o assunto. Finalmente, alguns exemplos e experimentos numéricos são apresentados.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfengUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessOptimization methodsConvex programmingRiemannian manifoldLower bounded curvatureComplexityMétodos de otimizaçãoProgramação convexaVariedade RiemmanianaCurvatura limitada inferiormenteComplexidadeCIENCIAS EXATAS E DA TERRA::MATEMATICAOptimization methods on Riemannian manifolds with lower bound curvature: gradient for scalar and multi-objective functions and subgradient for scalar functionsMétodos de otimização sobre variedades Riemannianas com curvatura limitada inferiormente: gradiente para funções escalares e multi-objetivo e subgradiente para funções escalaresinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis6600717948137941247600600600600-4268777512335152015-70908234179844016942075167498588264571reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/eaafc4e9-30a1-4114-b8bd-a1d7b1ecf5aa/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/103850f9-eb5d-46d1-9a2b-e573ecd57413/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/9a9d7d2d-e254-4816-99ff-cc75efe17ae2/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/1c9f5cff-148e-4a1c-be5f-529ac62581d5/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALTese - Maurício Silva Louzeiro - 2019.pdfTese - Maurício Silva Louzeiro - 2019.pdfapplication/pdf1655384http://repositorio.bc.ufg.br/tede/bitstreams/206b2654-5f3b-4c8a-8b69-90f260823ca5/downloada168bf697d30c99e45d2e9d19b65a563MD55tede/93332019-03-13 07:22:49.377http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/9333http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttps://repositorio.bc.ufg.br/tedeserver/oai/requestgrt.bc@ufg.bropendoar:oai:repositorio.bc.ufg.br:tede/12342019-03-13T10:22:49Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
| dc.title.eng.fl_str_mv |
Optimization methods on Riemannian manifolds with lower bound curvature: gradient for scalar and multi-objective functions and subgradient for scalar functions |
| dc.title.alternative.por.fl_str_mv |
Métodos de otimização sobre variedades Riemannianas com curvatura limitada inferiormente: gradiente para funções escalares e multi-objetivo e subgradiente para funções escalares |
| title |
Optimization methods on Riemannian manifolds with lower bound curvature: gradient for scalar and multi-objective functions and subgradient for scalar functions |
| spellingShingle |
Optimization methods on Riemannian manifolds with lower bound curvature: gradient for scalar and multi-objective functions and subgradient for scalar functions Louzeiro, Maurício Silva Optimization methods Convex programming Riemannian manifold Lower bounded curvature Complexity Métodos de otimização Programação convexa Variedade Riemmaniana Curvatura limitada inferiormente Complexidade CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| title_short |
Optimization methods on Riemannian manifolds with lower bound curvature: gradient for scalar and multi-objective functions and subgradient for scalar functions |
| title_full |
Optimization methods on Riemannian manifolds with lower bound curvature: gradient for scalar and multi-objective functions and subgradient for scalar functions |
| title_fullStr |
Optimization methods on Riemannian manifolds with lower bound curvature: gradient for scalar and multi-objective functions and subgradient for scalar functions |
| title_full_unstemmed |
Optimization methods on Riemannian manifolds with lower bound curvature: gradient for scalar and multi-objective functions and subgradient for scalar functions |
| title_sort |
Optimization methods on Riemannian manifolds with lower bound curvature: gradient for scalar and multi-objective functions and subgradient for scalar functions |
| author |
Louzeiro, Maurício Silva |
| author_facet |
Louzeiro, Maurício Silva |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
Ferreira, Orizon Pereira |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/0201145506453251 |
| dc.contributor.advisor-co1.fl_str_mv |
Prudente, Leandro da Fonseca |
| dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/4573611419840935 |
| dc.contributor.referee1.fl_str_mv |
Ferreira, Orizon Pereira |
| dc.contributor.referee2.fl_str_mv |
Bento, Glaydston de Carvalho |
| dc.contributor.referee3.fl_str_mv |
Cruz Neto, João Xavier da |
| dc.contributor.referee4.fl_str_mv |
Santos, Paulo Sérgio Marques dos |
| dc.contributor.referee5.fl_str_mv |
Perez, Luis Roman Lucambio |
| dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/3049272965306538 |
| dc.contributor.author.fl_str_mv |
Louzeiro, Maurício Silva |
| contributor_str_mv |
Ferreira, Orizon Pereira Prudente, Leandro da Fonseca Ferreira, Orizon Pereira Bento, Glaydston de Carvalho Cruz Neto, João Xavier da Santos, Paulo Sérgio Marques dos Perez, Luis Roman Lucambio |
| dc.subject.eng.fl_str_mv |
Optimization methods Convex programming Riemannian manifold Lower bounded curvature Complexity |
| topic |
Optimization methods Convex programming Riemannian manifold Lower bounded curvature Complexity Métodos de otimização Programação convexa Variedade Riemmaniana Curvatura limitada inferiormente Complexidade CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| dc.subject.por.fl_str_mv |
Métodos de otimização Programação convexa Variedade Riemmaniana Curvatura limitada inferiormente Complexidade |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| description |
Let M a Riemannian manifolds with lower bounded curvature. In this thesis, we consider first-order iterative methods to solve optimization problems on M. The gradient method to solve the problem min{f(p) : p M}, where f : M → R is a continuously differentiable convex function is presented with Lipschitz step-size, adaptive step-size and Armijo’s step-size. The first procedure requires that the objective function has Lipschitz continuous gradient, which is not necessary for the other approaches. Convergence of the whole sequence to a minimizer, without any level set boundedness assumption, is proved. Iteration-complexity bound for functions with Lipschitz continuous gradient is also presented. In addition, all these approaches are considered in the multiobjective setting. Here we also consider the subgradient method to solve the problem min{f(p) : p M}, where f : M → R is a convex function. Iteration-complexity bounds of the subgradient method with exogenous step-size and Polyak’s step size are stablished, completing and improving recent results on the subject. Finally, some examples and numerical experiments are presented. |
| publishDate |
2019 |
| dc.date.accessioned.fl_str_mv |
2019-03-13T10:22:49Z |
| dc.date.issued.fl_str_mv |
2019-02-26 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
LOUZEIRO, M. S. Optimization methods on Riemannian manifolds with lower bound curvature: gradient for scalar and multi-objective functions and subgradient for scalar functions. 2019. 83 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2019. |
| dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/9333 |
| dc.identifier.dark.fl_str_mv |
ark:/38995/0013000008vw7 |
| identifier_str_mv |
LOUZEIRO, M. S. Optimization methods on Riemannian manifolds with lower bound curvature: gradient for scalar and multi-objective functions and subgradient for scalar functions. 2019. 83 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2019. ark:/38995/0013000008vw7 |
| url |
http://repositorio.bc.ufg.br/tede/handle/tede/9333 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.program.fl_str_mv |
6600717948137941247 |
| dc.relation.confidence.fl_str_mv |
600 600 600 600 |
| dc.relation.department.fl_str_mv |
-4268777512335152015 |
| dc.relation.cnpq.fl_str_mv |
-7090823417984401694 |
| dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
| dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
| dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Matemática (IME) |
| dc.publisher.initials.fl_str_mv |
UFG |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
Instituto de Matemática e Estatística - IME (RG) |
| publisher.none.fl_str_mv |
Universidade Federal de Goiás |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
| instname_str |
Universidade Federal de Goiás (UFG) |
| instacron_str |
UFG |
| institution |
UFG |
| reponame_str |
Repositório Institucional da UFG |
| collection |
Repositório Institucional da UFG |
| bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/eaafc4e9-30a1-4114-b8bd-a1d7b1ecf5aa/download http://repositorio.bc.ufg.br/tede/bitstreams/103850f9-eb5d-46d1-9a2b-e573ecd57413/download http://repositorio.bc.ufg.br/tede/bitstreams/9a9d7d2d-e254-4816-99ff-cc75efe17ae2/download http://repositorio.bc.ufg.br/tede/bitstreams/1c9f5cff-148e-4a1c-be5f-529ac62581d5/download http://repositorio.bc.ufg.br/tede/bitstreams/206b2654-5f3b-4c8a-8b69-90f260823ca5/download |
| bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e a168bf697d30c99e45d2e9d19b65a563 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
| repository.mail.fl_str_mv |
grt.bc@ufg.br |
| _version_ |
1846536699389149184 |