Desenvolvimento de um dispositivo SSVEP rápido e confiável utilizando eletrodos a seco e frequências acima de 25 Hz
Ano de defesa: | 2018 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | , , |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Goiás
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Engenharia Elétrica e da Computação (EMC)
|
Departamento: |
Escola de Engenharia Elétrica, Mecânica e de Computação - EMC (RG)
|
País: |
Brasil
|
Palavras-chave em Português: | |
Palavras-chave em Inglês: | |
Área do conhecimento CNPq: | |
Link de acesso: | http://repositorio.bc.ufg.br/tede/handle/tede/8215 |
Resumo: | This paper presents a new approach for the processing and classification of visual evoked potentials of steady state (SSVEP). It introduces a ensemble tree model that combines canonical correlation analysis data with methods based on estimation of power spectral density. The stimuli were created using LEDs, from 7.04 Hz to 38.46 Hz. Data were collected using the Texas Instruments ADS1299EEG-Fe and three electrodes. The tests were performed for different distances and light intensities to evaluate the performance of the algorithm under different conditions. In all, 22 participants were recruited, and the average classification was 99.1 ± 2.27% with fixed decision time of 1 second. |
id |
UFG-2_246dcedc493f2b27d23ab5b0e7e2ee85 |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/8215 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Cruz Júnior, Gélson dahttp://lattes.cnpq.br/4370555454162131Cruz Júnior, Gélson dahttp://lattes.cnpq.br/4370555454162131Loja, Luiz Fernando BatistaPinheiro Júnior, Carlos Galvãohttp://lattes.cnpq.br/3421453420043988Silva, Andrei Damian da2018-03-14T10:57:00Z2018-03-02SILVA, A. D. Desenvolvimento de um dispositivo SSVEP rápido e confiável utilizando eletrodos a seco e frequências acima de 25 Hz. 2018. 98 f. Dissertação (Mestrado em Engenharia Elétrica e da Computação) - Universidade Federal de Goiás, Goiânia, 2018.http://repositorio.bc.ufg.br/tede/handle/tede/8215This paper presents a new approach for the processing and classification of visual evoked potentials of steady state (SSVEP). It introduces a ensemble tree model that combines canonical correlation analysis data with methods based on estimation of power spectral density. The stimuli were created using LEDs, from 7.04 Hz to 38.46 Hz. Data were collected using the Texas Instruments ADS1299EEG-Fe and three electrodes. The tests were performed for different distances and light intensities to evaluate the performance of the algorithm under different conditions. In all, 22 participants were recruited, and the average classification was 99.1 ± 2.27% with fixed decision time of 1 second.Este trabalho apresenta uma nova abordagem para o processamento e classificação de potenciais evocados visuais de estado estacionário (SSVEP). Este trabalho introduz um modelo de em aprendizagem por agrupamento de árvores de decisão que combina dados de análise da correlação canônica com métodos baseados na estimativa da densidade espectral de potência. Os estímulos foram criados utilizando LEDs, com frequência de 7.04 Hz até 38.46 Hz. Os dados foram coletados utilizando a placa ADS1299EEG-Fe da Texas Instruments e três eletrodos. Os testes foram realizados para diferentes distâncias e intensidades luminosas com o objetivo de avaliar o desempenho do algoritmo em condições diversas. Ao todo, 22 participantes foram recrutados e a taxa de acertos média foi de 99.1±2.27% com tempo de decisão fixo em 1 segundo.Submitted by JÚLIO HEBER SILVA (julioheber@yahoo.com.br) on 2018-03-13T17:24:13Z No. of bitstreams: 2 Dissertação - Andrei Damian da Silva - 2018.pdf: 2168750 bytes, checksum: 4d47d811f294faae439470b427c48f3e (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-03-14T10:57:00Z (GMT) No. of bitstreams: 2 Dissertação - Andrei Damian da Silva - 2018.pdf: 2168750 bytes, checksum: 4d47d811f294faae439470b427c48f3e (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2018-03-14T10:57:00Z (GMT). No. of bitstreams: 2 Dissertação - Andrei Damian da Silva - 2018.pdf: 2168750 bytes, checksum: 4d47d811f294faae439470b427c48f3e (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-03-02Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Engenharia Elétrica e da Computação (EMC)UFGBrasilEscola de Engenharia Elétrica, Mecânica e de Computação - EMC (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessEEGICCPotenciais evocados visuaisSSVEPBCIEEGVisual evoked potentialsSSVEPCIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAODesenvolvimento de um dispositivo SSVEP rápido e confiável utilizando eletrodos a seco e frequências acima de 25 HzDevelopment of a fast and reliable SSVEP device using dry electrodes and frequencies above 25 Hzinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-5088589215393046129600600600600-770572342172194464689300925156837715312075167498588264571reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/bdaffac1-a373-45ba-aa79-54949aa7d69e/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/9a1db4c2-3a3c-48ac-9b75-17e2b943b066/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/decf2350-ba20-44d5-a5c5-19ab6ad9243d/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/f47f1c35-a5de-47b6-a7b2-57ad4d233195/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertação - Andrei Damian da Silva - 2018.pdfDissertação - Andrei Damian da Silva - 2018.pdfapplication/pdf2168750http://repositorio.bc.ufg.br/tede/bitstreams/313b889b-03bc-48e7-9a79-c32df54df9d3/download4d47d811f294faae439470b427c48f3eMD55tede/82152018-03-14 07:57:00.297http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/8215http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2018-03-14T10:57Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
dc.title.eng.fl_str_mv |
Desenvolvimento de um dispositivo SSVEP rápido e confiável utilizando eletrodos a seco e frequências acima de 25 Hz |
dc.title.alternative.eng.fl_str_mv |
Development of a fast and reliable SSVEP device using dry electrodes and frequencies above 25 Hz |
title |
Desenvolvimento de um dispositivo SSVEP rápido e confiável utilizando eletrodos a seco e frequências acima de 25 Hz |
spellingShingle |
Desenvolvimento de um dispositivo SSVEP rápido e confiável utilizando eletrodos a seco e frequências acima de 25 Hz Silva, Andrei Damian da EEG ICC Potenciais evocados visuais SSVEP BCI EEG Visual evoked potentials SSVEP CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO |
title_short |
Desenvolvimento de um dispositivo SSVEP rápido e confiável utilizando eletrodos a seco e frequências acima de 25 Hz |
title_full |
Desenvolvimento de um dispositivo SSVEP rápido e confiável utilizando eletrodos a seco e frequências acima de 25 Hz |
title_fullStr |
Desenvolvimento de um dispositivo SSVEP rápido e confiável utilizando eletrodos a seco e frequências acima de 25 Hz |
title_full_unstemmed |
Desenvolvimento de um dispositivo SSVEP rápido e confiável utilizando eletrodos a seco e frequências acima de 25 Hz |
title_sort |
Desenvolvimento de um dispositivo SSVEP rápido e confiável utilizando eletrodos a seco e frequências acima de 25 Hz |
author |
Silva, Andrei Damian da |
author_facet |
Silva, Andrei Damian da |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Cruz Júnior, Gélson da |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/4370555454162131 |
dc.contributor.referee1.fl_str_mv |
Cruz Júnior, Gélson da |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/4370555454162131 |
dc.contributor.referee2.fl_str_mv |
Loja, Luiz Fernando Batista |
dc.contributor.referee3.fl_str_mv |
Pinheiro Júnior, Carlos Galvão |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/3421453420043988 |
dc.contributor.author.fl_str_mv |
Silva, Andrei Damian da |
contributor_str_mv |
Cruz Júnior, Gélson da Cruz Júnior, Gélson da Loja, Luiz Fernando Batista Pinheiro Júnior, Carlos Galvão |
dc.subject.por.fl_str_mv |
EEG ICC Potenciais evocados visuais SSVEP |
topic |
EEG ICC Potenciais evocados visuais SSVEP BCI EEG Visual evoked potentials SSVEP CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO |
dc.subject.eng.fl_str_mv |
BCI EEG Visual evoked potentials SSVEP |
dc.subject.cnpq.fl_str_mv |
CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO |
description |
This paper presents a new approach for the processing and classification of visual evoked potentials of steady state (SSVEP). It introduces a ensemble tree model that combines canonical correlation analysis data with methods based on estimation of power spectral density. The stimuli were created using LEDs, from 7.04 Hz to 38.46 Hz. Data were collected using the Texas Instruments ADS1299EEG-Fe and three electrodes. The tests were performed for different distances and light intensities to evaluate the performance of the algorithm under different conditions. In all, 22 participants were recruited, and the average classification was 99.1 ± 2.27% with fixed decision time of 1 second. |
publishDate |
2018 |
dc.date.accessioned.fl_str_mv |
2018-03-14T10:57:00Z |
dc.date.issued.fl_str_mv |
2018-03-02 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SILVA, A. D. Desenvolvimento de um dispositivo SSVEP rápido e confiável utilizando eletrodos a seco e frequências acima de 25 Hz. 2018. 98 f. Dissertação (Mestrado em Engenharia Elétrica e da Computação) - Universidade Federal de Goiás, Goiânia, 2018. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/8215 |
identifier_str_mv |
SILVA, A. D. Desenvolvimento de um dispositivo SSVEP rápido e confiável utilizando eletrodos a seco e frequências acima de 25 Hz. 2018. 98 f. Dissertação (Mestrado em Engenharia Elétrica e da Computação) - Universidade Federal de Goiás, Goiânia, 2018. |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/8215 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
-5088589215393046129 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
-7705723421721944646 |
dc.relation.cnpq.fl_str_mv |
8930092515683771531 |
dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Engenharia Elétrica e da Computação (EMC) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Escola de Engenharia Elétrica, Mecânica e de Computação - EMC (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/bdaffac1-a373-45ba-aa79-54949aa7d69e/download http://repositorio.bc.ufg.br/tede/bitstreams/9a1db4c2-3a3c-48ac-9b75-17e2b943b066/download http://repositorio.bc.ufg.br/tede/bitstreams/decf2350-ba20-44d5-a5c5-19ab6ad9243d/download http://repositorio.bc.ufg.br/tede/bitstreams/f47f1c35-a5de-47b6-a7b2-57ad4d233195/download http://repositorio.bc.ufg.br/tede/bitstreams/313b889b-03bc-48e7-9a79-c32df54df9d3/download |
bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 4d47d811f294faae439470b427c48f3e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1798045085084942336 |