Efficient processing of multiway spatial join queries in distributed systems

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Oliveira, Thiago Borges de lattes
Orientador(a): Costa, Fábio Moreira lattes
Banca de defesa: Costa, Fábio Moreira, Foulds, Leslie Richard, Rodrigues, Vagner José do Sacramento, Braghetto, Kelly Rosa, Meneses, Cláudio Nogueira de
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
dARK ID: ark:/38995/001300000d9w2
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Ciência da Computação em Rede UFG/UFMS (INF)
Departamento: Instituto de Informática - INF (RG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/8033
Resumo: Multiway spatial join is an important type of query in spatial data processing, and its efficient execution is a requirement to move spatial data analysis to scalable platforms as has already happened with relational and unstructured data. In this thesis, we provide a set of comprehensive models and methods to efficiently execute multiway spatial join queries in distributed systems. We introduce a cost-based optimizer that is able to select a good execution plan for processing such queries in distributed systems taking into account: the partitioning of data based on the spatial attributes of datasets; the intra-operator level of parallelism, which enables high scalability; and the economy of cluster resources by appropriately scheduling the queries before execution. We propose a cost model based on relevant metadata about the spatial datasets and the data distribution, which identifies the pattern of costs incurred when processing a query in this environment. We formalized the distributed multiway spatial join plan scheduling problem as a bi-objective linear integer model, considering the minimization of both the makespan and the communication cost as objectives. Three methods are proposed to compute schedules based on this model that significantly reduce the resource consumption required to process a query. Although targeting multiway spatial join query scheduling, these methods can be applied to other kinds of problems in distributed systems, notably problems that require both the alignment of data partitions and the assignment of jobs to machines. Additionally, we propose a method to control the usage of resources and increase system throughput in the presence of constraints on the network or processing capacity. The proposed cost-based optimizer was able to select good execution plans for all queries in our experiments, using public datasets with a significant range of sizes and complex spatial objects. We also present an execution engine that is capable of performing the queries with near-linear scalability with respect to execution time.
id UFG-2_3a0257206365d8bf91273f71d7ee4ca6
oai_identifier_str oai:repositorio.bc.ufg.br:tede/8033
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Costa, Fábio Moreirahttp://lattes.cnpq.br/0925150626762308Foulds, Leslie Richardhttp://lattes.cnpq.br/3737395828552021Rodrigues, Vagner José do Sacramentohttp://lattes.cnpq.br/4148896613580056Costa, Fábio MoreiraFoulds, Leslie RichardRodrigues, Vagner José do SacramentoBraghetto, Kelly RosaMeneses, Cláudio Nogueira dehttp://lattes.cnpq.br/5108431745414375Oliveira, Thiago Borges de2017-12-13T09:33:57Z2017-11-29OLIVEIRA, Thiago Borges de. Efficient processing of multiway spatial join queries in distributed systems. 2017. 156 f. Tese (Doutorado em Ciência da Computação em Rede) - Universidade Federal de Goiás, Goiânia, 2017.http://repositorio.bc.ufg.br/tede/handle/tede/8033ark:/38995/001300000d9w2Multiway spatial join is an important type of query in spatial data processing, and its efficient execution is a requirement to move spatial data analysis to scalable platforms as has already happened with relational and unstructured data. In this thesis, we provide a set of comprehensive models and methods to efficiently execute multiway spatial join queries in distributed systems. We introduce a cost-based optimizer that is able to select a good execution plan for processing such queries in distributed systems taking into account: the partitioning of data based on the spatial attributes of datasets; the intra-operator level of parallelism, which enables high scalability; and the economy of cluster resources by appropriately scheduling the queries before execution. We propose a cost model based on relevant metadata about the spatial datasets and the data distribution, which identifies the pattern of costs incurred when processing a query in this environment. We formalized the distributed multiway spatial join plan scheduling problem as a bi-objective linear integer model, considering the minimization of both the makespan and the communication cost as objectives. Three methods are proposed to compute schedules based on this model that significantly reduce the resource consumption required to process a query. Although targeting multiway spatial join query scheduling, these methods can be applied to other kinds of problems in distributed systems, notably problems that require both the alignment of data partitions and the assignment of jobs to machines. Additionally, we propose a method to control the usage of resources and increase system throughput in the presence of constraints on the network or processing capacity. The proposed cost-based optimizer was able to select good execution plans for all queries in our experiments, using public datasets with a significant range of sizes and complex spatial objects. We also present an execution engine that is capable of performing the queries with near-linear scalability with respect to execution time.A multi-junção espacial é um tipo importante de consulta usada no processamento de dados espaciais e sua execução eficiente é um requisito para mover a análise de dados espaciais para plataformas escaláveis, assim como aconteceu com dados relacionais e não estruturados. Nesta tese, propomos um conjunto de modelos e métodos para executar eficientemente consultas de multi-junção espacial em sistemas distribuídos. Apresentamos um otimizador baseado em custos que seleciona um bom plano de execução levando em consideração: o particionamento de dados com base nos atributos espaciais dos datasets; o nível de paralelismo intra-operador que proporciona alta escalabilidade; e o escalonamento das consultas antes da execução que resulta em economia de recursos computacionais. Propomos um modelo de custo baseado em metadados dos datasets e da distribuição de dados, que identifica o padrão de custos incorridos no processamento de uma consulta neste ambiente. Formalizamos o problema de escalonamento de planos de execução da multi-junção espacial distribuída como um modelo linear inteiro bi-objetivo, que minimiza tanto o custo de processamento quanto o custo de comunicação. Propomos três métodos para gerar escalonamentos a partir deste modelo, os quais reduzem significativamente o consumo de recursos no processamento das consultas. Embora projetados para o escalonamento da multi-junção espacial, esses métodos podem também ser aplicados a outros tipos de problemas em sistemas distribuídos, que necessitam do alinhamento de partições de dados e da distribuição de tarefas a máquinas de forma balanceada. Além disso, propomos um método para controlar o uso de recursos e aumentar a vazão do sistema na presença de restrições nas capacidades da rede ou de processamento. O otimizador proposto foi capaz de selecionar bons planos de execução para todas as consultas em nossos experimentos, as quais usaram datasets públicos com uma variedade significativa de tamanhos e de objetos espaciais complexos. Apresentamos também uma máquina de execução, capaz de executar as consultas com escalabilidade próxima de linear em relação ao tempo de execução.application/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Ciência da Computação em Rede UFG/UFMS (INF)UFGBrasilInstituto de Informática - INF (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessDistributed multiway spatial joinCost-based optimizerJob schedulingHistogramsMulti-junção espacial distribuídaOtimizador baseado em custosEscalonamento de tarefasHistogramasCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOEfficient processing of multiway spatial join queries in distributed systemsProcessamento eficiente de consultas de multi-junção espacial em sistemas distribuídosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis-3303550325223384799600600600-77122667346336447683671711205811204509reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGORIGINALTese - Thiago Borges de Oliveira - 2017.pdfTese - Thiago Borges de Oliveira - 2017.pdfapplication/pdf1684209http://repositorio.bc.ufg.br/tede/bitstreams/69653a65-cf87-4e90-bbb7-0a5b5d99a294/downloadf64b32084ca6b13a58109e4d2cffe541MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/361e45cb-cdc7-4771-a002-069ce2fdd201/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/a542f5e0-a1bb-4c46-bc5e-19b055cac3df/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/e24871f9-0d04-49b0-a3a1-af8a6e12b86a/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/7a4ac390-6577-4829-8856-234cbec880dd/downloadd41d8cd98f00b204e9800998ecf8427eMD54tede/80332017-12-13 09:06:49.058http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/8033http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttps://repositorio.bc.ufg.br/tedeserver/oai/requestgrt.bc@ufg.bropendoar:oai:repositorio.bc.ufg.br:tede/12342017-12-13T11:06:49Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.eng.fl_str_mv Efficient processing of multiway spatial join queries in distributed systems
dc.title.alternative.por.fl_str_mv Processamento eficiente de consultas de multi-junção espacial em sistemas distribuídos
title Efficient processing of multiway spatial join queries in distributed systems
spellingShingle Efficient processing of multiway spatial join queries in distributed systems
Oliveira, Thiago Borges de
Distributed multiway spatial join
Cost-based optimizer
Job scheduling
Histograms
Multi-junção espacial distribuída
Otimizador baseado em custos
Escalonamento de tarefas
Histogramas
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Efficient processing of multiway spatial join queries in distributed systems
title_full Efficient processing of multiway spatial join queries in distributed systems
title_fullStr Efficient processing of multiway spatial join queries in distributed systems
title_full_unstemmed Efficient processing of multiway spatial join queries in distributed systems
title_sort Efficient processing of multiway spatial join queries in distributed systems
author Oliveira, Thiago Borges de
author_facet Oliveira, Thiago Borges de
author_role author
dc.contributor.advisor1.fl_str_mv Costa, Fábio Moreira
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0925150626762308
dc.contributor.advisor-co1.fl_str_mv Foulds, Leslie Richard
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/3737395828552021
dc.contributor.advisor-co2.fl_str_mv Rodrigues, Vagner José do Sacramento
dc.contributor.advisor-co2Lattes.fl_str_mv http://lattes.cnpq.br/4148896613580056
dc.contributor.referee1.fl_str_mv Costa, Fábio Moreira
dc.contributor.referee2.fl_str_mv Foulds, Leslie Richard
dc.contributor.referee3.fl_str_mv Rodrigues, Vagner José do Sacramento
dc.contributor.referee4.fl_str_mv Braghetto, Kelly Rosa
dc.contributor.referee5.fl_str_mv Meneses, Cláudio Nogueira de
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/5108431745414375
dc.contributor.author.fl_str_mv Oliveira, Thiago Borges de
contributor_str_mv Costa, Fábio Moreira
Foulds, Leslie Richard
Rodrigues, Vagner José do Sacramento
Costa, Fábio Moreira
Foulds, Leslie Richard
Rodrigues, Vagner José do Sacramento
Braghetto, Kelly Rosa
Meneses, Cláudio Nogueira de
dc.subject.eng.fl_str_mv Distributed multiway spatial join
Cost-based optimizer
Job scheduling
Histograms
topic Distributed multiway spatial join
Cost-based optimizer
Job scheduling
Histograms
Multi-junção espacial distribuída
Otimizador baseado em custos
Escalonamento de tarefas
Histogramas
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.por.fl_str_mv Multi-junção espacial distribuída
Otimizador baseado em custos
Escalonamento de tarefas
Histogramas
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description Multiway spatial join is an important type of query in spatial data processing, and its efficient execution is a requirement to move spatial data analysis to scalable platforms as has already happened with relational and unstructured data. In this thesis, we provide a set of comprehensive models and methods to efficiently execute multiway spatial join queries in distributed systems. We introduce a cost-based optimizer that is able to select a good execution plan for processing such queries in distributed systems taking into account: the partitioning of data based on the spatial attributes of datasets; the intra-operator level of parallelism, which enables high scalability; and the economy of cluster resources by appropriately scheduling the queries before execution. We propose a cost model based on relevant metadata about the spatial datasets and the data distribution, which identifies the pattern of costs incurred when processing a query in this environment. We formalized the distributed multiway spatial join plan scheduling problem as a bi-objective linear integer model, considering the minimization of both the makespan and the communication cost as objectives. Three methods are proposed to compute schedules based on this model that significantly reduce the resource consumption required to process a query. Although targeting multiway spatial join query scheduling, these methods can be applied to other kinds of problems in distributed systems, notably problems that require both the alignment of data partitions and the assignment of jobs to machines. Additionally, we propose a method to control the usage of resources and increase system throughput in the presence of constraints on the network or processing capacity. The proposed cost-based optimizer was able to select good execution plans for all queries in our experiments, using public datasets with a significant range of sizes and complex spatial objects. We also present an execution engine that is capable of performing the queries with near-linear scalability with respect to execution time.
publishDate 2017
dc.date.accessioned.fl_str_mv 2017-12-13T09:33:57Z
dc.date.issued.fl_str_mv 2017-11-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv OLIVEIRA, Thiago Borges de. Efficient processing of multiway spatial join queries in distributed systems. 2017. 156 f. Tese (Doutorado em Ciência da Computação em Rede) - Universidade Federal de Goiás, Goiânia, 2017.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/8033
dc.identifier.dark.fl_str_mv ark:/38995/001300000d9w2
identifier_str_mv OLIVEIRA, Thiago Borges de. Efficient processing of multiway spatial join queries in distributed systems. 2017. 156 f. Tese (Doutorado em Ciência da Computação em Rede) - Universidade Federal de Goiás, Goiânia, 2017.
ark:/38995/001300000d9w2
url http://repositorio.bc.ufg.br/tede/handle/tede/8033
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -3303550325223384799
dc.relation.confidence.fl_str_mv 600
600
600
dc.relation.department.fl_str_mv -7712266734633644768
dc.relation.cnpq.fl_str_mv 3671711205811204509
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Ciência da Computação em Rede UFG/UFMS (INF)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Informática - INF (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/69653a65-cf87-4e90-bbb7-0a5b5d99a294/download
http://repositorio.bc.ufg.br/tede/bitstreams/361e45cb-cdc7-4771-a002-069ce2fdd201/download
http://repositorio.bc.ufg.br/tede/bitstreams/a542f5e0-a1bb-4c46-bc5e-19b055cac3df/download
http://repositorio.bc.ufg.br/tede/bitstreams/e24871f9-0d04-49b0-a3a1-af8a6e12b86a/download
http://repositorio.bc.ufg.br/tede/bitstreams/7a4ac390-6577-4829-8856-234cbec880dd/download
bitstream.checksum.fl_str_mv f64b32084ca6b13a58109e4d2cffe541
bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv grt.bc@ufg.br
_version_ 1846536739605184512