Efficient processing of multiway spatial join queries in distributed systems
| Ano de defesa: | 2017 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | , , , , |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| dARK ID: | ark:/38995/001300000d9w2 |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Goiás
|
| Programa de Pós-Graduação: |
Programa de Pós-graduação em Ciência da Computação em Rede UFG/UFMS (INF)
|
| Departamento: |
Instituto de Informática - INF (RG)
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | http://repositorio.bc.ufg.br/tede/handle/tede/8033 |
Resumo: | Multiway spatial join is an important type of query in spatial data processing, and its efficient execution is a requirement to move spatial data analysis to scalable platforms as has already happened with relational and unstructured data. In this thesis, we provide a set of comprehensive models and methods to efficiently execute multiway spatial join queries in distributed systems. We introduce a cost-based optimizer that is able to select a good execution plan for processing such queries in distributed systems taking into account: the partitioning of data based on the spatial attributes of datasets; the intra-operator level of parallelism, which enables high scalability; and the economy of cluster resources by appropriately scheduling the queries before execution. We propose a cost model based on relevant metadata about the spatial datasets and the data distribution, which identifies the pattern of costs incurred when processing a query in this environment. We formalized the distributed multiway spatial join plan scheduling problem as a bi-objective linear integer model, considering the minimization of both the makespan and the communication cost as objectives. Three methods are proposed to compute schedules based on this model that significantly reduce the resource consumption required to process a query. Although targeting multiway spatial join query scheduling, these methods can be applied to other kinds of problems in distributed systems, notably problems that require both the alignment of data partitions and the assignment of jobs to machines. Additionally, we propose a method to control the usage of resources and increase system throughput in the presence of constraints on the network or processing capacity. The proposed cost-based optimizer was able to select good execution plans for all queries in our experiments, using public datasets with a significant range of sizes and complex spatial objects. We also present an execution engine that is capable of performing the queries with near-linear scalability with respect to execution time. |
| id |
UFG-2_3a0257206365d8bf91273f71d7ee4ca6 |
|---|---|
| oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/8033 |
| network_acronym_str |
UFG-2 |
| network_name_str |
Repositório Institucional da UFG |
| repository_id_str |
|
| spelling |
Costa, Fábio Moreirahttp://lattes.cnpq.br/0925150626762308Foulds, Leslie Richardhttp://lattes.cnpq.br/3737395828552021Rodrigues, Vagner José do Sacramentohttp://lattes.cnpq.br/4148896613580056Costa, Fábio MoreiraFoulds, Leslie RichardRodrigues, Vagner José do SacramentoBraghetto, Kelly RosaMeneses, Cláudio Nogueira dehttp://lattes.cnpq.br/5108431745414375Oliveira, Thiago Borges de2017-12-13T09:33:57Z2017-11-29OLIVEIRA, Thiago Borges de. Efficient processing of multiway spatial join queries in distributed systems. 2017. 156 f. Tese (Doutorado em Ciência da Computação em Rede) - Universidade Federal de Goiás, Goiânia, 2017.http://repositorio.bc.ufg.br/tede/handle/tede/8033ark:/38995/001300000d9w2Multiway spatial join is an important type of query in spatial data processing, and its efficient execution is a requirement to move spatial data analysis to scalable platforms as has already happened with relational and unstructured data. In this thesis, we provide a set of comprehensive models and methods to efficiently execute multiway spatial join queries in distributed systems. We introduce a cost-based optimizer that is able to select a good execution plan for processing such queries in distributed systems taking into account: the partitioning of data based on the spatial attributes of datasets; the intra-operator level of parallelism, which enables high scalability; and the economy of cluster resources by appropriately scheduling the queries before execution. We propose a cost model based on relevant metadata about the spatial datasets and the data distribution, which identifies the pattern of costs incurred when processing a query in this environment. We formalized the distributed multiway spatial join plan scheduling problem as a bi-objective linear integer model, considering the minimization of both the makespan and the communication cost as objectives. Three methods are proposed to compute schedules based on this model that significantly reduce the resource consumption required to process a query. Although targeting multiway spatial join query scheduling, these methods can be applied to other kinds of problems in distributed systems, notably problems that require both the alignment of data partitions and the assignment of jobs to machines. Additionally, we propose a method to control the usage of resources and increase system throughput in the presence of constraints on the network or processing capacity. The proposed cost-based optimizer was able to select good execution plans for all queries in our experiments, using public datasets with a significant range of sizes and complex spatial objects. We also present an execution engine that is capable of performing the queries with near-linear scalability with respect to execution time.A multi-junção espacial é um tipo importante de consulta usada no processamento de dados espaciais e sua execução eficiente é um requisito para mover a análise de dados espaciais para plataformas escaláveis, assim como aconteceu com dados relacionais e não estruturados. Nesta tese, propomos um conjunto de modelos e métodos para executar eficientemente consultas de multi-junção espacial em sistemas distribuídos. Apresentamos um otimizador baseado em custos que seleciona um bom plano de execução levando em consideração: o particionamento de dados com base nos atributos espaciais dos datasets; o nível de paralelismo intra-operador que proporciona alta escalabilidade; e o escalonamento das consultas antes da execução que resulta em economia de recursos computacionais. Propomos um modelo de custo baseado em metadados dos datasets e da distribuição de dados, que identifica o padrão de custos incorridos no processamento de uma consulta neste ambiente. Formalizamos o problema de escalonamento de planos de execução da multi-junção espacial distribuída como um modelo linear inteiro bi-objetivo, que minimiza tanto o custo de processamento quanto o custo de comunicação. Propomos três métodos para gerar escalonamentos a partir deste modelo, os quais reduzem significativamente o consumo de recursos no processamento das consultas. Embora projetados para o escalonamento da multi-junção espacial, esses métodos podem também ser aplicados a outros tipos de problemas em sistemas distribuídos, que necessitam do alinhamento de partições de dados e da distribuição de tarefas a máquinas de forma balanceada. Além disso, propomos um método para controlar o uso de recursos e aumentar a vazão do sistema na presença de restrições nas capacidades da rede ou de processamento. O otimizador proposto foi capaz de selecionar bons planos de execução para todas as consultas em nossos experimentos, as quais usaram datasets públicos com uma variedade significativa de tamanhos e de objetos espaciais complexos. Apresentamos também uma máquina de execução, capaz de executar as consultas com escalabilidade próxima de linear em relação ao tempo de execução.application/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Ciência da Computação em Rede UFG/UFMS (INF)UFGBrasilInstituto de Informática - INF (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessDistributed multiway spatial joinCost-based optimizerJob schedulingHistogramsMulti-junção espacial distribuídaOtimizador baseado em custosEscalonamento de tarefasHistogramasCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOEfficient processing of multiway spatial join queries in distributed systemsProcessamento eficiente de consultas de multi-junção espacial em sistemas distribuídosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis-3303550325223384799600600600-77122667346336447683671711205811204509reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGORIGINALTese - Thiago Borges de Oliveira - 2017.pdfTese - Thiago Borges de Oliveira - 2017.pdfapplication/pdf1684209http://repositorio.bc.ufg.br/tede/bitstreams/69653a65-cf87-4e90-bbb7-0a5b5d99a294/downloadf64b32084ca6b13a58109e4d2cffe541MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/361e45cb-cdc7-4771-a002-069ce2fdd201/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/a542f5e0-a1bb-4c46-bc5e-19b055cac3df/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/e24871f9-0d04-49b0-a3a1-af8a6e12b86a/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/7a4ac390-6577-4829-8856-234cbec880dd/downloadd41d8cd98f00b204e9800998ecf8427eMD54tede/80332017-12-13 09:06:49.058http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/8033http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttps://repositorio.bc.ufg.br/tedeserver/oai/requestgrt.bc@ufg.bropendoar:oai:repositorio.bc.ufg.br:tede/12342017-12-13T11:06:49Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
| dc.title.eng.fl_str_mv |
Efficient processing of multiway spatial join queries in distributed systems |
| dc.title.alternative.por.fl_str_mv |
Processamento eficiente de consultas de multi-junção espacial em sistemas distribuídos |
| title |
Efficient processing of multiway spatial join queries in distributed systems |
| spellingShingle |
Efficient processing of multiway spatial join queries in distributed systems Oliveira, Thiago Borges de Distributed multiway spatial join Cost-based optimizer Job scheduling Histograms Multi-junção espacial distribuída Otimizador baseado em custos Escalonamento de tarefas Histogramas CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| title_short |
Efficient processing of multiway spatial join queries in distributed systems |
| title_full |
Efficient processing of multiway spatial join queries in distributed systems |
| title_fullStr |
Efficient processing of multiway spatial join queries in distributed systems |
| title_full_unstemmed |
Efficient processing of multiway spatial join queries in distributed systems |
| title_sort |
Efficient processing of multiway spatial join queries in distributed systems |
| author |
Oliveira, Thiago Borges de |
| author_facet |
Oliveira, Thiago Borges de |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
Costa, Fábio Moreira |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/0925150626762308 |
| dc.contributor.advisor-co1.fl_str_mv |
Foulds, Leslie Richard |
| dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/3737395828552021 |
| dc.contributor.advisor-co2.fl_str_mv |
Rodrigues, Vagner José do Sacramento |
| dc.contributor.advisor-co2Lattes.fl_str_mv |
http://lattes.cnpq.br/4148896613580056 |
| dc.contributor.referee1.fl_str_mv |
Costa, Fábio Moreira |
| dc.contributor.referee2.fl_str_mv |
Foulds, Leslie Richard |
| dc.contributor.referee3.fl_str_mv |
Rodrigues, Vagner José do Sacramento |
| dc.contributor.referee4.fl_str_mv |
Braghetto, Kelly Rosa |
| dc.contributor.referee5.fl_str_mv |
Meneses, Cláudio Nogueira de |
| dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/5108431745414375 |
| dc.contributor.author.fl_str_mv |
Oliveira, Thiago Borges de |
| contributor_str_mv |
Costa, Fábio Moreira Foulds, Leslie Richard Rodrigues, Vagner José do Sacramento Costa, Fábio Moreira Foulds, Leslie Richard Rodrigues, Vagner José do Sacramento Braghetto, Kelly Rosa Meneses, Cláudio Nogueira de |
| dc.subject.eng.fl_str_mv |
Distributed multiway spatial join Cost-based optimizer Job scheduling Histograms |
| topic |
Distributed multiway spatial join Cost-based optimizer Job scheduling Histograms Multi-junção espacial distribuída Otimizador baseado em custos Escalonamento de tarefas Histogramas CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| dc.subject.por.fl_str_mv |
Multi-junção espacial distribuída Otimizador baseado em custos Escalonamento de tarefas Histogramas |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| description |
Multiway spatial join is an important type of query in spatial data processing, and its efficient execution is a requirement to move spatial data analysis to scalable platforms as has already happened with relational and unstructured data. In this thesis, we provide a set of comprehensive models and methods to efficiently execute multiway spatial join queries in distributed systems. We introduce a cost-based optimizer that is able to select a good execution plan for processing such queries in distributed systems taking into account: the partitioning of data based on the spatial attributes of datasets; the intra-operator level of parallelism, which enables high scalability; and the economy of cluster resources by appropriately scheduling the queries before execution. We propose a cost model based on relevant metadata about the spatial datasets and the data distribution, which identifies the pattern of costs incurred when processing a query in this environment. We formalized the distributed multiway spatial join plan scheduling problem as a bi-objective linear integer model, considering the minimization of both the makespan and the communication cost as objectives. Three methods are proposed to compute schedules based on this model that significantly reduce the resource consumption required to process a query. Although targeting multiway spatial join query scheduling, these methods can be applied to other kinds of problems in distributed systems, notably problems that require both the alignment of data partitions and the assignment of jobs to machines. Additionally, we propose a method to control the usage of resources and increase system throughput in the presence of constraints on the network or processing capacity. The proposed cost-based optimizer was able to select good execution plans for all queries in our experiments, using public datasets with a significant range of sizes and complex spatial objects. We also present an execution engine that is capable of performing the queries with near-linear scalability with respect to execution time. |
| publishDate |
2017 |
| dc.date.accessioned.fl_str_mv |
2017-12-13T09:33:57Z |
| dc.date.issued.fl_str_mv |
2017-11-29 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
OLIVEIRA, Thiago Borges de. Efficient processing of multiway spatial join queries in distributed systems. 2017. 156 f. Tese (Doutorado em Ciência da Computação em Rede) - Universidade Federal de Goiás, Goiânia, 2017. |
| dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/8033 |
| dc.identifier.dark.fl_str_mv |
ark:/38995/001300000d9w2 |
| identifier_str_mv |
OLIVEIRA, Thiago Borges de. Efficient processing of multiway spatial join queries in distributed systems. 2017. 156 f. Tese (Doutorado em Ciência da Computação em Rede) - Universidade Federal de Goiás, Goiânia, 2017. ark:/38995/001300000d9w2 |
| url |
http://repositorio.bc.ufg.br/tede/handle/tede/8033 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.program.fl_str_mv |
-3303550325223384799 |
| dc.relation.confidence.fl_str_mv |
600 600 600 |
| dc.relation.department.fl_str_mv |
-7712266734633644768 |
| dc.relation.cnpq.fl_str_mv |
3671711205811204509 |
| dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
| dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Ciência da Computação em Rede UFG/UFMS (INF) |
| dc.publisher.initials.fl_str_mv |
UFG |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
Instituto de Informática - INF (RG) |
| publisher.none.fl_str_mv |
Universidade Federal de Goiás |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
| instname_str |
Universidade Federal de Goiás (UFG) |
| instacron_str |
UFG |
| institution |
UFG |
| reponame_str |
Repositório Institucional da UFG |
| collection |
Repositório Institucional da UFG |
| bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/69653a65-cf87-4e90-bbb7-0a5b5d99a294/download http://repositorio.bc.ufg.br/tede/bitstreams/361e45cb-cdc7-4771-a002-069ce2fdd201/download http://repositorio.bc.ufg.br/tede/bitstreams/a542f5e0-a1bb-4c46-bc5e-19b055cac3df/download http://repositorio.bc.ufg.br/tede/bitstreams/e24871f9-0d04-49b0-a3a1-af8a6e12b86a/download http://repositorio.bc.ufg.br/tede/bitstreams/7a4ac390-6577-4829-8856-234cbec880dd/download |
| bitstream.checksum.fl_str_mv |
f64b32084ca6b13a58109e4d2cffe541 bd3efa91386c1718a7f26a329fdcb468 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
| repository.mail.fl_str_mv |
grt.bc@ufg.br |
| _version_ |
1846536739605184512 |