Convergence analysis of descent optimization algorithms under Polyak-Lojasiewicz- Kurdyka conditions

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Mota, Tiago Sousa lattes
Orientador(a): Bento, Glaydston de Carvalho lattes
Banca de defesa: Bento, Glaydston de Carvalho lattes, Ferreira, Orizon Pereira lattes, Melo, Jefferson Divino Gonçalves de lattes, Cruz Neto, João Xavier da lattes, Lopes, Jurandir de Oliveira lattes
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
dARK ID: ark:/38995/001300000zxqb
Idioma: eng
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Matemática (IME)
Departamento: Instituto de Matemática e Estatística - IME (RMG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.bc.ufg.br/tede/handle/tede/14636
Resumo: This thesis presents a comprehensive convergence analysis of generic classes of descent algorithms in nonsmooth and nonconvex optimization under the Polyak-Lojasiewicz-Kurdyka (PLK) property. In particular, we revisit and extend the results on convergence rates presented by Khanh, Mordukhovich, and Tran (J. Optim. Theory Appl., 2023), refining the understanding of the zero exponent in smooth PLK functions and broadening the discussion on the inconsistency between the lower exponent PLK property and the Lipschitz continuity of gradients to more general settings. Among other contributions, we establish the finite termination of generic algorithms under lower exponent PLK conditions. Additionally, we derive new convergence rates for inexact reduced gradient methods and certain variants of the boosted algorithm in DC programming. We present novel results by considering a modified error condition, obtaining either finite or superlinear convergence for the generated sequences. Notably, we reveal that for a broad class of difference programs, the lower exponent PLK conditions are inherently incompatible with the Lipschitz continuity of the gradient of the plus function near a local minimizer. However, we demonstrate that this inconsistency may not hold if Lipschitz continuity is replaced solely by gradient continuity
id UFG-2_6e71e4f32c6de1dbc410ee0da15694f6
oai_identifier_str oai:repositorio.bc.ufg.br:tede/14636
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Bento, Glaydston de Carvalhohttp://lattes.cnpq.br/1089906772427394Bento, Glaydston de Carvalhohttp://lattes.cnpq.br/1089906772427394Ferreira, Orizon Pereirahttp://lattes.cnpq.br/0201145506453251Melo, Jefferson Divino Gonçalves dehttp://lattes.cnpq.br/8296171010616435Cruz Neto, João Xavier dahttp://lattes.cnpq.br/9936034232663152Lopes, Jurandir de Oliveirahttp://lattes.cnpq.br/9461891355101210https://lattes.cnpq.br/8357755340945597Mota, Tiago Sousa2025-08-25T19:19:48Z2025-08-25T19:19:48Z2025-07-01MOTA, T. S. Convergence analysis of descent optimization algorithms under Polyak-Lojasiewicz- Kurdyka conditions. 2025. 86 f. Tese (Doutorado em Matemática) - Instituto de Matemática e Estatística, Universidade Federal de Goiás, Goiânia, 2025.https://repositorio.bc.ufg.br/tede/handle/tede/14636ark:/38995/001300000zxqbThis thesis presents a comprehensive convergence analysis of generic classes of descent algorithms in nonsmooth and nonconvex optimization under the Polyak-Lojasiewicz-Kurdyka (PLK) property. In particular, we revisit and extend the results on convergence rates presented by Khanh, Mordukhovich, and Tran (J. Optim. Theory Appl., 2023), refining the understanding of the zero exponent in smooth PLK functions and broadening the discussion on the inconsistency between the lower exponent PLK property and the Lipschitz continuity of gradients to more general settings. Among other contributions, we establish the finite termination of generic algorithms under lower exponent PLK conditions. Additionally, we derive new convergence rates for inexact reduced gradient methods and certain variants of the boosted algorithm in DC programming. We present novel results by considering a modified error condition, obtaining either finite or superlinear convergence for the generated sequences. Notably, we reveal that for a broad class of difference programs, the lower exponent PLK conditions are inherently incompatible with the Lipschitz continuity of the gradient of the plus function near a local minimizer. However, we demonstrate that this inconsistency may not hold if Lipschitz continuity is replaced solely by gradient continuityEsta tese apresenta uma análise de convergência abrangente de classes genéricas de algoritmos de descida em otimização não suave e não convexa sob a propriedade Polyak-Lojasiewicz-Kurdyka (PLK). Em particular, revisitamos e estendemos os resultados sobre taxas de convergência apresentadas por Khanh, Mordukhovich e Tran (J. Optim. Theory Appl., 2023), refinando a compreensão do expoente zero em funções PLK suaves e ampliando a discussão sobre a inconsistência entre a propriedade PLK de expoente baixo e a Lipschitz continuidade do gradiente para configurações mais gerais. Entre outras contribuições, estabelecemos a terminação finita de algoritmos genéricos sob condições PLK de expoente baixo. Além disso, Estabelecemos novas estimativas de taxa de convergência para métodos de gradiente inexatos e certas variantes do algoritmo na programação DC (diferença de funções convexa). Apresentamos resultados inovadores ao considerar uma condição de erro modificado, obtendo convergência finita ou superlinear para as sequências geradas. Notavelmente, revelamos que para uma ampla classe de programas de diferença de funções convexas, as condições PLK de expoente baixo são inerentemente incompatíveis com a Lipschitz continuidade do gradiente da função mais perto de um minimizador local, entretanto, mostramos que essa inconsistência pode não se manter se a continuidade de Lipschitz for substituída apenas pela continuidade do gradiente.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESengUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RMG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessOtimização não suaveMétodos de descidaAnálise de convergência globalCondições de Polyak-Łojasiewicz-KurdykaTaxa de convergênciaGradiente inexatoNonsmooth optimizationDescent methodsGlobal convergence analysisPolyak-Łojasiewicz-Kurdyka conditionsConvergence rateInexact gradientCIENCIAS EXATAS E DA TERRA::MATEMATICAConvergence analysis of descent optimization algorithms under Polyak-Lojasiewicz- Kurdyka conditionsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.bc.ufg.br/tede/bitstreams/933d4dbc-0a28-4942-ad8f-52a2560ed92c/download8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALTese - Tiago Sousa Mota - 2025.pdfTese - Tiago Sousa Mota - 2025.pdfapplication/pdf967009https://repositorio.bc.ufg.br/tede/bitstreams/165217c3-c137-49be-a63c-989278a5b55a/download7194888bd6005540bcdd29c92acbb331MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.bc.ufg.br/tede/bitstreams/1baef8d7-ac2b-4aad-8fed-7613f61625bd/download4460e5956bc1d1639be9ae6146a50347MD52tede/146362025-08-25 16:19:49.151http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/14636https://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttps://repositorio.bc.ufg.br/tedeserver/oai/requestgrt.bc@ufg.bropendoar:oai:repositorio.bc.ufg.br:tede/12342025-08-25T19:19:49Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
dc.title.none.fl_str_mv Convergence analysis of descent optimization algorithms under Polyak-Lojasiewicz- Kurdyka conditions
title Convergence analysis of descent optimization algorithms under Polyak-Lojasiewicz- Kurdyka conditions
spellingShingle Convergence analysis of descent optimization algorithms under Polyak-Lojasiewicz- Kurdyka conditions
Mota, Tiago Sousa
Otimização não suave
Métodos de descida
Análise de convergência global
Condições de Polyak-Łojasiewicz-Kurdyka
Taxa de convergência
Gradiente inexato
Nonsmooth optimization
Descent methods
Global convergence analysis
Polyak-Łojasiewicz-Kurdyka conditions
Convergence rate
Inexact gradient
CIENCIAS EXATAS E DA TERRA::MATEMATICA
title_short Convergence analysis of descent optimization algorithms under Polyak-Lojasiewicz- Kurdyka conditions
title_full Convergence analysis of descent optimization algorithms under Polyak-Lojasiewicz- Kurdyka conditions
title_fullStr Convergence analysis of descent optimization algorithms under Polyak-Lojasiewicz- Kurdyka conditions
title_full_unstemmed Convergence analysis of descent optimization algorithms under Polyak-Lojasiewicz- Kurdyka conditions
title_sort Convergence analysis of descent optimization algorithms under Polyak-Lojasiewicz- Kurdyka conditions
author Mota, Tiago Sousa
author_facet Mota, Tiago Sousa
author_role author
dc.contributor.advisor1.fl_str_mv Bento, Glaydston de Carvalho
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1089906772427394
dc.contributor.referee1.fl_str_mv Bento, Glaydston de Carvalho
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/1089906772427394
dc.contributor.referee2.fl_str_mv Ferreira, Orizon Pereira
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/0201145506453251
dc.contributor.referee3.fl_str_mv Melo, Jefferson Divino Gonçalves de
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/8296171010616435
dc.contributor.referee4.fl_str_mv Cruz Neto, João Xavier da
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/9936034232663152
dc.contributor.referee5.fl_str_mv Lopes, Jurandir de Oliveira
dc.contributor.referee5Lattes.fl_str_mv http://lattes.cnpq.br/9461891355101210
dc.contributor.authorLattes.fl_str_mv https://lattes.cnpq.br/8357755340945597
dc.contributor.author.fl_str_mv Mota, Tiago Sousa
contributor_str_mv Bento, Glaydston de Carvalho
Bento, Glaydston de Carvalho
Ferreira, Orizon Pereira
Melo, Jefferson Divino Gonçalves de
Cruz Neto, João Xavier da
Lopes, Jurandir de Oliveira
dc.subject.por.fl_str_mv Otimização não suave
Métodos de descida
Análise de convergência global
Condições de Polyak-Łojasiewicz-Kurdyka
Taxa de convergência
Gradiente inexato
topic Otimização não suave
Métodos de descida
Análise de convergência global
Condições de Polyak-Łojasiewicz-Kurdyka
Taxa de convergência
Gradiente inexato
Nonsmooth optimization
Descent methods
Global convergence analysis
Polyak-Łojasiewicz-Kurdyka conditions
Convergence rate
Inexact gradient
CIENCIAS EXATAS E DA TERRA::MATEMATICA
dc.subject.eng.fl_str_mv Nonsmooth optimization
Descent methods
Global convergence analysis
Polyak-Łojasiewicz-Kurdyka conditions
Convergence rate
Inexact gradient
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::MATEMATICA
description This thesis presents a comprehensive convergence analysis of generic classes of descent algorithms in nonsmooth and nonconvex optimization under the Polyak-Lojasiewicz-Kurdyka (PLK) property. In particular, we revisit and extend the results on convergence rates presented by Khanh, Mordukhovich, and Tran (J. Optim. Theory Appl., 2023), refining the understanding of the zero exponent in smooth PLK functions and broadening the discussion on the inconsistency between the lower exponent PLK property and the Lipschitz continuity of gradients to more general settings. Among other contributions, we establish the finite termination of generic algorithms under lower exponent PLK conditions. Additionally, we derive new convergence rates for inexact reduced gradient methods and certain variants of the boosted algorithm in DC programming. We present novel results by considering a modified error condition, obtaining either finite or superlinear convergence for the generated sequences. Notably, we reveal that for a broad class of difference programs, the lower exponent PLK conditions are inherently incompatible with the Lipschitz continuity of the gradient of the plus function near a local minimizer. However, we demonstrate that this inconsistency may not hold if Lipschitz continuity is replaced solely by gradient continuity
publishDate 2025
dc.date.accessioned.fl_str_mv 2025-08-25T19:19:48Z
dc.date.available.fl_str_mv 2025-08-25T19:19:48Z
dc.date.issued.fl_str_mv 2025-07-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MOTA, T. S. Convergence analysis of descent optimization algorithms under Polyak-Lojasiewicz- Kurdyka conditions. 2025. 86 f. Tese (Doutorado em Matemática) - Instituto de Matemática e Estatística, Universidade Federal de Goiás, Goiânia, 2025.
dc.identifier.uri.fl_str_mv https://repositorio.bc.ufg.br/tede/handle/tede/14636
dc.identifier.dark.fl_str_mv ark:/38995/001300000zxqb
identifier_str_mv MOTA, T. S. Convergence analysis of descent optimization algorithms under Polyak-Lojasiewicz- Kurdyka conditions. 2025. 86 f. Tese (Doutorado em Matemática) - Instituto de Matemática e Estatística, Universidade Federal de Goiás, Goiânia, 2025.
ark:/38995/001300000zxqb
url https://repositorio.bc.ufg.br/tede/handle/tede/14636
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Matemática (IME)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Matemática e Estatística - IME (RMG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv https://repositorio.bc.ufg.br/tede/bitstreams/933d4dbc-0a28-4942-ad8f-52a2560ed92c/download
https://repositorio.bc.ufg.br/tede/bitstreams/165217c3-c137-49be-a63c-989278a5b55a/download
https://repositorio.bc.ufg.br/tede/bitstreams/1baef8d7-ac2b-4aad-8fed-7613f61625bd/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
7194888bd6005540bcdd29c92acbb331
4460e5956bc1d1639be9ae6146a50347
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv grt.bc@ufg.br
_version_ 1846536659515998208