Convergence analysis of descent optimization algorithms under Polyak-Lojasiewicz- Kurdyka conditions
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | , , , , |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| dARK ID: | ark:/38995/001300000zxqb |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de Goiás
|
| Programa de Pós-Graduação: |
Programa de Pós-graduação em Matemática (IME)
|
| Departamento: |
Instituto de Matemática e Estatística - IME (RMG)
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.bc.ufg.br/tede/handle/tede/14636 |
Resumo: | This thesis presents a comprehensive convergence analysis of generic classes of descent algorithms in nonsmooth and nonconvex optimization under the Polyak-Lojasiewicz-Kurdyka (PLK) property. In particular, we revisit and extend the results on convergence rates presented by Khanh, Mordukhovich, and Tran (J. Optim. Theory Appl., 2023), refining the understanding of the zero exponent in smooth PLK functions and broadening the discussion on the inconsistency between the lower exponent PLK property and the Lipschitz continuity of gradients to more general settings. Among other contributions, we establish the finite termination of generic algorithms under lower exponent PLK conditions. Additionally, we derive new convergence rates for inexact reduced gradient methods and certain variants of the boosted algorithm in DC programming. We present novel results by considering a modified error condition, obtaining either finite or superlinear convergence for the generated sequences. Notably, we reveal that for a broad class of difference programs, the lower exponent PLK conditions are inherently incompatible with the Lipschitz continuity of the gradient of the plus function near a local minimizer. However, we demonstrate that this inconsistency may not hold if Lipschitz continuity is replaced solely by gradient continuity |
| id |
UFG-2_6e71e4f32c6de1dbc410ee0da15694f6 |
|---|---|
| oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/14636 |
| network_acronym_str |
UFG-2 |
| network_name_str |
Repositório Institucional da UFG |
| repository_id_str |
|
| spelling |
Bento, Glaydston de Carvalhohttp://lattes.cnpq.br/1089906772427394Bento, Glaydston de Carvalhohttp://lattes.cnpq.br/1089906772427394Ferreira, Orizon Pereirahttp://lattes.cnpq.br/0201145506453251Melo, Jefferson Divino Gonçalves dehttp://lattes.cnpq.br/8296171010616435Cruz Neto, João Xavier dahttp://lattes.cnpq.br/9936034232663152Lopes, Jurandir de Oliveirahttp://lattes.cnpq.br/9461891355101210https://lattes.cnpq.br/8357755340945597Mota, Tiago Sousa2025-08-25T19:19:48Z2025-08-25T19:19:48Z2025-07-01MOTA, T. S. Convergence analysis of descent optimization algorithms under Polyak-Lojasiewicz- Kurdyka conditions. 2025. 86 f. Tese (Doutorado em Matemática) - Instituto de Matemática e Estatística, Universidade Federal de Goiás, Goiânia, 2025.https://repositorio.bc.ufg.br/tede/handle/tede/14636ark:/38995/001300000zxqbThis thesis presents a comprehensive convergence analysis of generic classes of descent algorithms in nonsmooth and nonconvex optimization under the Polyak-Lojasiewicz-Kurdyka (PLK) property. In particular, we revisit and extend the results on convergence rates presented by Khanh, Mordukhovich, and Tran (J. Optim. Theory Appl., 2023), refining the understanding of the zero exponent in smooth PLK functions and broadening the discussion on the inconsistency between the lower exponent PLK property and the Lipschitz continuity of gradients to more general settings. Among other contributions, we establish the finite termination of generic algorithms under lower exponent PLK conditions. Additionally, we derive new convergence rates for inexact reduced gradient methods and certain variants of the boosted algorithm in DC programming. We present novel results by considering a modified error condition, obtaining either finite or superlinear convergence for the generated sequences. Notably, we reveal that for a broad class of difference programs, the lower exponent PLK conditions are inherently incompatible with the Lipschitz continuity of the gradient of the plus function near a local minimizer. However, we demonstrate that this inconsistency may not hold if Lipschitz continuity is replaced solely by gradient continuityEsta tese apresenta uma análise de convergência abrangente de classes genéricas de algoritmos de descida em otimização não suave e não convexa sob a propriedade Polyak-Lojasiewicz-Kurdyka (PLK). Em particular, revisitamos e estendemos os resultados sobre taxas de convergência apresentadas por Khanh, Mordukhovich e Tran (J. Optim. Theory Appl., 2023), refinando a compreensão do expoente zero em funções PLK suaves e ampliando a discussão sobre a inconsistência entre a propriedade PLK de expoente baixo e a Lipschitz continuidade do gradiente para configurações mais gerais. Entre outras contribuições, estabelecemos a terminação finita de algoritmos genéricos sob condições PLK de expoente baixo. Além disso, Estabelecemos novas estimativas de taxa de convergência para métodos de gradiente inexatos e certas variantes do algoritmo na programação DC (diferença de funções convexa). Apresentamos resultados inovadores ao considerar uma condição de erro modificado, obtendo convergência finita ou superlinear para as sequências geradas. Notavelmente, revelamos que para uma ampla classe de programas de diferença de funções convexas, as condições PLK de expoente baixo são inerentemente incompatíveis com a Lipschitz continuidade do gradiente da função mais perto de um minimizador local, entretanto, mostramos que essa inconsistência pode não se manter se a continuidade de Lipschitz for substituída apenas pela continuidade do gradiente.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESengUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RMG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessOtimização não suaveMétodos de descidaAnálise de convergência globalCondições de Polyak-Łojasiewicz-KurdykaTaxa de convergênciaGradiente inexatoNonsmooth optimizationDescent methodsGlobal convergence analysisPolyak-Łojasiewicz-Kurdyka conditionsConvergence rateInexact gradientCIENCIAS EXATAS E DA TERRA::MATEMATICAConvergence analysis of descent optimization algorithms under Polyak-Lojasiewicz- Kurdyka conditionsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.bc.ufg.br/tede/bitstreams/933d4dbc-0a28-4942-ad8f-52a2560ed92c/download8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALTese - Tiago Sousa Mota - 2025.pdfTese - Tiago Sousa Mota - 2025.pdfapplication/pdf967009https://repositorio.bc.ufg.br/tede/bitstreams/165217c3-c137-49be-a63c-989278a5b55a/download7194888bd6005540bcdd29c92acbb331MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.bc.ufg.br/tede/bitstreams/1baef8d7-ac2b-4aad-8fed-7613f61625bd/download4460e5956bc1d1639be9ae6146a50347MD52tede/146362025-08-25 16:19:49.151http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/14636https://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttps://repositorio.bc.ufg.br/tedeserver/oai/requestgrt.bc@ufg.bropendoar:oai:repositorio.bc.ufg.br:tede/12342025-08-25T19:19:49Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| dc.title.none.fl_str_mv |
Convergence analysis of descent optimization algorithms under Polyak-Lojasiewicz- Kurdyka conditions |
| title |
Convergence analysis of descent optimization algorithms under Polyak-Lojasiewicz- Kurdyka conditions |
| spellingShingle |
Convergence analysis of descent optimization algorithms under Polyak-Lojasiewicz- Kurdyka conditions Mota, Tiago Sousa Otimização não suave Métodos de descida Análise de convergência global Condições de Polyak-Łojasiewicz-Kurdyka Taxa de convergência Gradiente inexato Nonsmooth optimization Descent methods Global convergence analysis Polyak-Łojasiewicz-Kurdyka conditions Convergence rate Inexact gradient CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| title_short |
Convergence analysis of descent optimization algorithms under Polyak-Lojasiewicz- Kurdyka conditions |
| title_full |
Convergence analysis of descent optimization algorithms under Polyak-Lojasiewicz- Kurdyka conditions |
| title_fullStr |
Convergence analysis of descent optimization algorithms under Polyak-Lojasiewicz- Kurdyka conditions |
| title_full_unstemmed |
Convergence analysis of descent optimization algorithms under Polyak-Lojasiewicz- Kurdyka conditions |
| title_sort |
Convergence analysis of descent optimization algorithms under Polyak-Lojasiewicz- Kurdyka conditions |
| author |
Mota, Tiago Sousa |
| author_facet |
Mota, Tiago Sousa |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
Bento, Glaydston de Carvalho |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/1089906772427394 |
| dc.contributor.referee1.fl_str_mv |
Bento, Glaydston de Carvalho |
| dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/1089906772427394 |
| dc.contributor.referee2.fl_str_mv |
Ferreira, Orizon Pereira |
| dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/0201145506453251 |
| dc.contributor.referee3.fl_str_mv |
Melo, Jefferson Divino Gonçalves de |
| dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/8296171010616435 |
| dc.contributor.referee4.fl_str_mv |
Cruz Neto, João Xavier da |
| dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/9936034232663152 |
| dc.contributor.referee5.fl_str_mv |
Lopes, Jurandir de Oliveira |
| dc.contributor.referee5Lattes.fl_str_mv |
http://lattes.cnpq.br/9461891355101210 |
| dc.contributor.authorLattes.fl_str_mv |
https://lattes.cnpq.br/8357755340945597 |
| dc.contributor.author.fl_str_mv |
Mota, Tiago Sousa |
| contributor_str_mv |
Bento, Glaydston de Carvalho Bento, Glaydston de Carvalho Ferreira, Orizon Pereira Melo, Jefferson Divino Gonçalves de Cruz Neto, João Xavier da Lopes, Jurandir de Oliveira |
| dc.subject.por.fl_str_mv |
Otimização não suave Métodos de descida Análise de convergência global Condições de Polyak-Łojasiewicz-Kurdyka Taxa de convergência Gradiente inexato |
| topic |
Otimização não suave Métodos de descida Análise de convergência global Condições de Polyak-Łojasiewicz-Kurdyka Taxa de convergência Gradiente inexato Nonsmooth optimization Descent methods Global convergence analysis Polyak-Łojasiewicz-Kurdyka conditions Convergence rate Inexact gradient CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| dc.subject.eng.fl_str_mv |
Nonsmooth optimization Descent methods Global convergence analysis Polyak-Łojasiewicz-Kurdyka conditions Convergence rate Inexact gradient |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| description |
This thesis presents a comprehensive convergence analysis of generic classes of descent algorithms in nonsmooth and nonconvex optimization under the Polyak-Lojasiewicz-Kurdyka (PLK) property. In particular, we revisit and extend the results on convergence rates presented by Khanh, Mordukhovich, and Tran (J. Optim. Theory Appl., 2023), refining the understanding of the zero exponent in smooth PLK functions and broadening the discussion on the inconsistency between the lower exponent PLK property and the Lipschitz continuity of gradients to more general settings. Among other contributions, we establish the finite termination of generic algorithms under lower exponent PLK conditions. Additionally, we derive new convergence rates for inexact reduced gradient methods and certain variants of the boosted algorithm in DC programming. We present novel results by considering a modified error condition, obtaining either finite or superlinear convergence for the generated sequences. Notably, we reveal that for a broad class of difference programs, the lower exponent PLK conditions are inherently incompatible with the Lipschitz continuity of the gradient of the plus function near a local minimizer. However, we demonstrate that this inconsistency may not hold if Lipschitz continuity is replaced solely by gradient continuity |
| publishDate |
2025 |
| dc.date.accessioned.fl_str_mv |
2025-08-25T19:19:48Z |
| dc.date.available.fl_str_mv |
2025-08-25T19:19:48Z |
| dc.date.issued.fl_str_mv |
2025-07-01 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
MOTA, T. S. Convergence analysis of descent optimization algorithms under Polyak-Lojasiewicz- Kurdyka conditions. 2025. 86 f. Tese (Doutorado em Matemática) - Instituto de Matemática e Estatística, Universidade Federal de Goiás, Goiânia, 2025. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.bc.ufg.br/tede/handle/tede/14636 |
| dc.identifier.dark.fl_str_mv |
ark:/38995/001300000zxqb |
| identifier_str_mv |
MOTA, T. S. Convergence analysis of descent optimization algorithms under Polyak-Lojasiewicz- Kurdyka conditions. 2025. 86 f. Tese (Doutorado em Matemática) - Instituto de Matemática e Estatística, Universidade Federal de Goiás, Goiânia, 2025. ark:/38995/001300000zxqb |
| url |
https://repositorio.bc.ufg.br/tede/handle/tede/14636 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
| dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Matemática (IME) |
| dc.publisher.initials.fl_str_mv |
UFG |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
Instituto de Matemática e Estatística - IME (RMG) |
| publisher.none.fl_str_mv |
Universidade Federal de Goiás |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
| instname_str |
Universidade Federal de Goiás (UFG) |
| instacron_str |
UFG |
| institution |
UFG |
| reponame_str |
Repositório Institucional da UFG |
| collection |
Repositório Institucional da UFG |
| bitstream.url.fl_str_mv |
https://repositorio.bc.ufg.br/tede/bitstreams/933d4dbc-0a28-4942-ad8f-52a2560ed92c/download https://repositorio.bc.ufg.br/tede/bitstreams/165217c3-c137-49be-a63c-989278a5b55a/download https://repositorio.bc.ufg.br/tede/bitstreams/1baef8d7-ac2b-4aad-8fed-7613f61625bd/download |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 7194888bd6005540bcdd29c92acbb331 4460e5956bc1d1639be9ae6146a50347 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
| repository.mail.fl_str_mv |
grt.bc@ufg.br |
| _version_ |
1846536659515998208 |