Modelos de aprendizado de máquina para avaliação preditiva de toxicidade dérmica aguda de compostos químicos

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Hall, Steven Umualê Silva lattes
Orientador(a): Andrade, Carolina Horta lattes
Banca de defesa: Andrade, Carolina Horta, Scotti, Marcus Tullius, Neves, Bruno Junior
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
dARK ID: ark:/38995/0013000001spg
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Ciências Farmacêuticas (FF)
Departamento: Faculdade de Farmácia - FF (RMG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/12928
Resumo: Introduction: Acute dermal toxicity is a collection of adverse effects that a substance can cause in the first 24 hours of dermal exposure to this chemical. This toxicological property using animals by estimating the lethal dose (LD50), the dose required to kill 50% of individuals of a test population. However, due to public and political pressure on issues related to animal testing, alternative methods are becoming essential to reduce the costs and number of test animals. Computational methods such as machine learning methods have been presented as a reliable alternative to animal testing for hazard assessment. Objectives: The main goal of this study was to develop machine learning models capable of predicting acute dermal toxicity of chemicals, and to make these models available in an online server for the scientific community. Methodology: Acute dermal toxicity datasets where compiled from literature and rigorously curated. Classificatory and multi-classificatory QSPR (Quantitative Structure-property Relationships) models were developed using molecular descriptors and machine learning algorithms and where then used to screen the CosIng library as a case study. Results and discussion: After data curation, 2,622 compounds were kept in the dataset (384 toxic and 2238 non-toxic). To avoid developing biased models, the dataset was balanced, and 768 (384 toxic and 384 non-toxic) were kept for the modeling. The best classificatory models were generated with random forest algorithm and achieved CCR of 79%, SE of 80%, SP of 78%. The best models were used in an integrated hierarchical strategy that obtained ACC= 74% and Recall =74%. In total 33 compounds from CosIng were correctly predicted as toxic. Conclusions: The developed QSPR models were robust and predictive and are capable of predicting acute dermal toxicity efficiently. These are thde first models developed for this endpoint which passed by a rigorous data curation and validation process, being valuable in the prediction of toxicity from new untested compounds. These models are available in a web server through the address https://stoptox.mml.unc.edu .
id UFG-2_723f02db4231d86d73cb51b0bb0cfa6c
oai_identifier_str oai:repositorio.bc.ufg.br:tede/12928
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Andrade, Carolina Hortahttp://lattes.cnpq.br/2018317447324228Alves, Vinicius de Medeiroshttp://lattes.cnpq.br/7314022014345242Andrade, Carolina HortaScotti, Marcus TulliusNeves, Bruno Juniorhttp://lattes.cnpq.br/0748535123716444Hall, Steven Umualê Silva2023-07-03T11:15:04Z2023-07-03T11:15:04Z2020-12-16HALL, S. U. S. Modelos de aprendizado de máquina para avaliação preditiva de toxicidade dérmica aguda de compostos químicos. 2020. 98 f. Dissertação (Mestrado em Ciências Farmacêuticas) - Universidade Federal de Goiás, Goiânia, 2020.http://repositorio.bc.ufg.br/tede/handle/tede/12928ark:/38995/0013000001spgIntroduction: Acute dermal toxicity is a collection of adverse effects that a substance can cause in the first 24 hours of dermal exposure to this chemical. This toxicological property using animals by estimating the lethal dose (LD50), the dose required to kill 50% of individuals of a test population. However, due to public and political pressure on issues related to animal testing, alternative methods are becoming essential to reduce the costs and number of test animals. Computational methods such as machine learning methods have been presented as a reliable alternative to animal testing for hazard assessment. Objectives: The main goal of this study was to develop machine learning models capable of predicting acute dermal toxicity of chemicals, and to make these models available in an online server for the scientific community. Methodology: Acute dermal toxicity datasets where compiled from literature and rigorously curated. Classificatory and multi-classificatory QSPR (Quantitative Structure-property Relationships) models were developed using molecular descriptors and machine learning algorithms and where then used to screen the CosIng library as a case study. Results and discussion: After data curation, 2,622 compounds were kept in the dataset (384 toxic and 2238 non-toxic). To avoid developing biased models, the dataset was balanced, and 768 (384 toxic and 384 non-toxic) were kept for the modeling. The best classificatory models were generated with random forest algorithm and achieved CCR of 79%, SE of 80%, SP of 78%. The best models were used in an integrated hierarchical strategy that obtained ACC= 74% and Recall =74%. In total 33 compounds from CosIng were correctly predicted as toxic. Conclusions: The developed QSPR models were robust and predictive and are capable of predicting acute dermal toxicity efficiently. These are thde first models developed for this endpoint which passed by a rigorous data curation and validation process, being valuable in the prediction of toxicity from new untested compounds. These models are available in a web server through the address https://stoptox.mml.unc.edu .Introdução: A toxicidade dérmica aguda representa um conjunto de efeitos adversos que uma determinada substância pode causar nas primeiras 24 horas de exposição dérmica. Essa propriedade toxicológica é comumente avaliada através de modelos animais, estimando-se a dose letal (DL50), que corresponde à dose capaz de matar 50% dos indivíduos de uma população em teste. Porém, com a crescente pressão pública e política relacionada aos testes em animais, metodologias alternativas ao uso de animais se tornam essenciais para reduzir o número de animais e o custo desses ensaios. Nesse sentido, métodos computacionais como modelos de aprendizado de máquina têm se apresentado como uma alternativa eficaz para a avaliação da segurança de substâncias químicas. Objetivo: O objetivo geral desse trabalho foi desenvolver modelos de aprendizado de máquina capazes de predizer a toxicidade dérmica aguda de substâncias e disponibilizar esses modelos em um servidor on line para uso da comunidade científica. Metodologia: Os conjuntos de dados de compostos com toxicidade dérmica aguda foram compilados da literatura e preparados. Modelos de QSPR (do inglês, Quantitative Structure-property Relationships) classificatórios e multi-classificatórioss usando diferentes descritores moleculares e métodos de aprendizado de máquina foram desenvolvidos e validados. Posteriormente, os melhores modelos foram usados para triar a biblioteca CosIng como estudo de caso. Resultados e discussões: Após o preparo, 2.622 compostos únicos (384 tóxicos e 2.238 sem classificação/possivelmente não tóxicos) foram mantidos no conjunto de dados. Para evitar o desenvolvimento de modelos tendenciosos, o conjunto de dados foi balanceado e 768 compostos (384 tóxicos e 384 sem classificação/possivelmente não tóxicos) foram mantidos para modelagem. Os melhores modelos classificatórios foram desenvolvidos utilizando o método Randon Forest (RF), sendo que o melhor modelo apresentou valores de taxa de classificação correta (CCR) = 79%, sensibilidade (SE) = 80% e especificidade (SP) = 78%. Os melhores modelos foram então integrados em uma estratégia hierárquica de modelagem por consenso, que obteve melhores métricas como acurácia (ACC) = 74%. A triagem realizada na biblioteca da CosIng resultou na predição correta de 33 compostos como tóxicos. Conclusões: Os modelos de aprendizado de máquina desenvolvidos nesse trabalho se mostraram robustos e preditivos, e foram capazes de predizer eficientemente toxicidade dérmica aguda de substâncias químicas. Esses são os primeiros modelos computacionais desenvolvidos para esse endpoint que passaram por um rigoroso processo de curagem e validação, se mostrando valiosos na predição de novos compostos. Esses modelos foram disponibilizados em um servidor web para avaliação in silico de compostos ainda não testados, que pode ser acessado através do sítio https://stoptox.mml.unc.edu/Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESporUniversidade Federal de GoiásPrograma de Pós-graduação em Ciências Farmacêuticas (FF)UFGBrasilFaculdade de Farmácia - FF (RMG)Attribution-NonCommercial-NoDerivatives 4.0 Internationalinfo:eu-repo/semantics/openAccessToxicidade dérmica agudaAprendizado de máquinaQSPRMétodos alternativosAcute dermal toxicityMachine learningAlternative methodsCIENCIAS BIOLOGICAS::FARMACOLOGIA::FARMACOLOGIA GERALModelos de aprendizado de máquina para avaliação preditiva de toxicidade dérmica aguda de compostos químicosMachine learning models for predictive evaluation of acute dermal toxicity of chemicalsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis27500500500500225241reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.bc.ufg.br/tede/bitstreams/b74ce689-5a27-4c71-92a4-95db143ec780/download8a4605be74aa9ea9d79846c1fba20a33MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.bc.ufg.br/tede/bitstreams/2565ff3c-b067-4df2-966a-10b49338603f/download4460e5956bc1d1639be9ae6146a50347MD52ORIGINALDissertação - Steven Umualê Silva Hall - 2020.pdfDissertação - Steven Umualê Silva Hall - 2020.pdfapplication/pdf13464339http://repositorio.bc.ufg.br/tede/bitstreams/973e0293-4fb5-4562-a8b8-cff7c1a0a6ae/downloadd330c40e5153dca9af4adea5a5d81e79MD53tede/129282023-07-03 08:15:04.965http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accessoai:repositorio.bc.ufg.br:tede/12928http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttps://repositorio.bc.ufg.br/tedeserver/oai/requestgrt.bc@ufg.bropendoar:oai:repositorio.bc.ufg.br:tede/12342023-07-03T11:15:04Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
dc.title.pt_BR.fl_str_mv Modelos de aprendizado de máquina para avaliação preditiva de toxicidade dérmica aguda de compostos químicos
dc.title.alternative.eng.fl_str_mv Machine learning models for predictive evaluation of acute dermal toxicity of chemicals
title Modelos de aprendizado de máquina para avaliação preditiva de toxicidade dérmica aguda de compostos químicos
spellingShingle Modelos de aprendizado de máquina para avaliação preditiva de toxicidade dérmica aguda de compostos químicos
Hall, Steven Umualê Silva
Toxicidade dérmica aguda
Aprendizado de máquina
QSPR
Métodos alternativos
Acute dermal toxicity
Machine learning
Alternative methods
CIENCIAS BIOLOGICAS::FARMACOLOGIA::FARMACOLOGIA GERAL
title_short Modelos de aprendizado de máquina para avaliação preditiva de toxicidade dérmica aguda de compostos químicos
title_full Modelos de aprendizado de máquina para avaliação preditiva de toxicidade dérmica aguda de compostos químicos
title_fullStr Modelos de aprendizado de máquina para avaliação preditiva de toxicidade dérmica aguda de compostos químicos
title_full_unstemmed Modelos de aprendizado de máquina para avaliação preditiva de toxicidade dérmica aguda de compostos químicos
title_sort Modelos de aprendizado de máquina para avaliação preditiva de toxicidade dérmica aguda de compostos químicos
author Hall, Steven Umualê Silva
author_facet Hall, Steven Umualê Silva
author_role author
dc.contributor.advisor1.fl_str_mv Andrade, Carolina Horta
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/2018317447324228
dc.contributor.advisor-co1.fl_str_mv Alves, Vinicius de Medeiros
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/7314022014345242
dc.contributor.referee1.fl_str_mv Andrade, Carolina Horta
dc.contributor.referee2.fl_str_mv Scotti, Marcus Tullius
dc.contributor.referee3.fl_str_mv Neves, Bruno Junior
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/0748535123716444
dc.contributor.author.fl_str_mv Hall, Steven Umualê Silva
contributor_str_mv Andrade, Carolina Horta
Alves, Vinicius de Medeiros
Andrade, Carolina Horta
Scotti, Marcus Tullius
Neves, Bruno Junior
dc.subject.por.fl_str_mv Toxicidade dérmica aguda
Aprendizado de máquina
QSPR
Métodos alternativos
topic Toxicidade dérmica aguda
Aprendizado de máquina
QSPR
Métodos alternativos
Acute dermal toxicity
Machine learning
Alternative methods
CIENCIAS BIOLOGICAS::FARMACOLOGIA::FARMACOLOGIA GERAL
dc.subject.eng.fl_str_mv Acute dermal toxicity
Machine learning
Alternative methods
dc.subject.cnpq.fl_str_mv CIENCIAS BIOLOGICAS::FARMACOLOGIA::FARMACOLOGIA GERAL
description Introduction: Acute dermal toxicity is a collection of adverse effects that a substance can cause in the first 24 hours of dermal exposure to this chemical. This toxicological property using animals by estimating the lethal dose (LD50), the dose required to kill 50% of individuals of a test population. However, due to public and political pressure on issues related to animal testing, alternative methods are becoming essential to reduce the costs and number of test animals. Computational methods such as machine learning methods have been presented as a reliable alternative to animal testing for hazard assessment. Objectives: The main goal of this study was to develop machine learning models capable of predicting acute dermal toxicity of chemicals, and to make these models available in an online server for the scientific community. Methodology: Acute dermal toxicity datasets where compiled from literature and rigorously curated. Classificatory and multi-classificatory QSPR (Quantitative Structure-property Relationships) models were developed using molecular descriptors and machine learning algorithms and where then used to screen the CosIng library as a case study. Results and discussion: After data curation, 2,622 compounds were kept in the dataset (384 toxic and 2238 non-toxic). To avoid developing biased models, the dataset was balanced, and 768 (384 toxic and 384 non-toxic) were kept for the modeling. The best classificatory models were generated with random forest algorithm and achieved CCR of 79%, SE of 80%, SP of 78%. The best models were used in an integrated hierarchical strategy that obtained ACC= 74% and Recall =74%. In total 33 compounds from CosIng were correctly predicted as toxic. Conclusions: The developed QSPR models were robust and predictive and are capable of predicting acute dermal toxicity efficiently. These are thde first models developed for this endpoint which passed by a rigorous data curation and validation process, being valuable in the prediction of toxicity from new untested compounds. These models are available in a web server through the address https://stoptox.mml.unc.edu .
publishDate 2020
dc.date.issued.fl_str_mv 2020-12-16
dc.date.accessioned.fl_str_mv 2023-07-03T11:15:04Z
dc.date.available.fl_str_mv 2023-07-03T11:15:04Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv HALL, S. U. S. Modelos de aprendizado de máquina para avaliação preditiva de toxicidade dérmica aguda de compostos químicos. 2020. 98 f. Dissertação (Mestrado em Ciências Farmacêuticas) - Universidade Federal de Goiás, Goiânia, 2020.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/12928
dc.identifier.dark.fl_str_mv ark:/38995/0013000001spg
identifier_str_mv HALL, S. U. S. Modelos de aprendizado de máquina para avaliação preditiva de toxicidade dérmica aguda de compostos químicos. 2020. 98 f. Dissertação (Mestrado em Ciências Farmacêuticas) - Universidade Federal de Goiás, Goiânia, 2020.
ark:/38995/0013000001spg
url http://repositorio.bc.ufg.br/tede/handle/tede/12928
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 27
dc.relation.confidence.fl_str_mv 500
500
500
500
dc.relation.department.fl_str_mv 22
dc.relation.cnpq.fl_str_mv 524
dc.relation.sponsorship.fl_str_mv 1
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Ciências Farmacêuticas (FF)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Faculdade de Farmácia - FF (RMG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/b74ce689-5a27-4c71-92a4-95db143ec780/download
http://repositorio.bc.ufg.br/tede/bitstreams/2565ff3c-b067-4df2-966a-10b49338603f/download
http://repositorio.bc.ufg.br/tede/bitstreams/973e0293-4fb5-4562-a8b8-cff7c1a0a6ae/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
4460e5956bc1d1639be9ae6146a50347
d330c40e5153dca9af4adea5a5d81e79
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv grt.bc@ufg.br
_version_ 1846536616129069056