Modelos de aprendizado de máquina para avaliação preditiva de toxicidade dérmica aguda de compostos químicos
| Ano de defesa: | 2020 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | , , |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| dARK ID: | ark:/38995/0013000001spg |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Goiás
|
| Programa de Pós-Graduação: |
Programa de Pós-graduação em Ciências Farmacêuticas (FF)
|
| Departamento: |
Faculdade de Farmácia - FF (RMG)
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | http://repositorio.bc.ufg.br/tede/handle/tede/12928 |
Resumo: | Introduction: Acute dermal toxicity is a collection of adverse effects that a substance can cause in the first 24 hours of dermal exposure to this chemical. This toxicological property using animals by estimating the lethal dose (LD50), the dose required to kill 50% of individuals of a test population. However, due to public and political pressure on issues related to animal testing, alternative methods are becoming essential to reduce the costs and number of test animals. Computational methods such as machine learning methods have been presented as a reliable alternative to animal testing for hazard assessment. Objectives: The main goal of this study was to develop machine learning models capable of predicting acute dermal toxicity of chemicals, and to make these models available in an online server for the scientific community. Methodology: Acute dermal toxicity datasets where compiled from literature and rigorously curated. Classificatory and multi-classificatory QSPR (Quantitative Structure-property Relationships) models were developed using molecular descriptors and machine learning algorithms and where then used to screen the CosIng library as a case study. Results and discussion: After data curation, 2,622 compounds were kept in the dataset (384 toxic and 2238 non-toxic). To avoid developing biased models, the dataset was balanced, and 768 (384 toxic and 384 non-toxic) were kept for the modeling. The best classificatory models were generated with random forest algorithm and achieved CCR of 79%, SE of 80%, SP of 78%. The best models were used in an integrated hierarchical strategy that obtained ACC= 74% and Recall =74%. In total 33 compounds from CosIng were correctly predicted as toxic. Conclusions: The developed QSPR models were robust and predictive and are capable of predicting acute dermal toxicity efficiently. These are thde first models developed for this endpoint which passed by a rigorous data curation and validation process, being valuable in the prediction of toxicity from new untested compounds. These models are available in a web server through the address https://stoptox.mml.unc.edu . |
| id |
UFG-2_723f02db4231d86d73cb51b0bb0cfa6c |
|---|---|
| oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/12928 |
| network_acronym_str |
UFG-2 |
| network_name_str |
Repositório Institucional da UFG |
| repository_id_str |
|
| spelling |
Andrade, Carolina Hortahttp://lattes.cnpq.br/2018317447324228Alves, Vinicius de Medeiroshttp://lattes.cnpq.br/7314022014345242Andrade, Carolina HortaScotti, Marcus TulliusNeves, Bruno Juniorhttp://lattes.cnpq.br/0748535123716444Hall, Steven Umualê Silva2023-07-03T11:15:04Z2023-07-03T11:15:04Z2020-12-16HALL, S. U. S. Modelos de aprendizado de máquina para avaliação preditiva de toxicidade dérmica aguda de compostos químicos. 2020. 98 f. Dissertação (Mestrado em Ciências Farmacêuticas) - Universidade Federal de Goiás, Goiânia, 2020.http://repositorio.bc.ufg.br/tede/handle/tede/12928ark:/38995/0013000001spgIntroduction: Acute dermal toxicity is a collection of adverse effects that a substance can cause in the first 24 hours of dermal exposure to this chemical. This toxicological property using animals by estimating the lethal dose (LD50), the dose required to kill 50% of individuals of a test population. However, due to public and political pressure on issues related to animal testing, alternative methods are becoming essential to reduce the costs and number of test animals. Computational methods such as machine learning methods have been presented as a reliable alternative to animal testing for hazard assessment. Objectives: The main goal of this study was to develop machine learning models capable of predicting acute dermal toxicity of chemicals, and to make these models available in an online server for the scientific community. Methodology: Acute dermal toxicity datasets where compiled from literature and rigorously curated. Classificatory and multi-classificatory QSPR (Quantitative Structure-property Relationships) models were developed using molecular descriptors and machine learning algorithms and where then used to screen the CosIng library as a case study. Results and discussion: After data curation, 2,622 compounds were kept in the dataset (384 toxic and 2238 non-toxic). To avoid developing biased models, the dataset was balanced, and 768 (384 toxic and 384 non-toxic) were kept for the modeling. The best classificatory models were generated with random forest algorithm and achieved CCR of 79%, SE of 80%, SP of 78%. The best models were used in an integrated hierarchical strategy that obtained ACC= 74% and Recall =74%. In total 33 compounds from CosIng were correctly predicted as toxic. Conclusions: The developed QSPR models were robust and predictive and are capable of predicting acute dermal toxicity efficiently. These are thde first models developed for this endpoint which passed by a rigorous data curation and validation process, being valuable in the prediction of toxicity from new untested compounds. These models are available in a web server through the address https://stoptox.mml.unc.edu .Introdução: A toxicidade dérmica aguda representa um conjunto de efeitos adversos que uma determinada substância pode causar nas primeiras 24 horas de exposição dérmica. Essa propriedade toxicológica é comumente avaliada através de modelos animais, estimando-se a dose letal (DL50), que corresponde à dose capaz de matar 50% dos indivíduos de uma população em teste. Porém, com a crescente pressão pública e política relacionada aos testes em animais, metodologias alternativas ao uso de animais se tornam essenciais para reduzir o número de animais e o custo desses ensaios. Nesse sentido, métodos computacionais como modelos de aprendizado de máquina têm se apresentado como uma alternativa eficaz para a avaliação da segurança de substâncias químicas. Objetivo: O objetivo geral desse trabalho foi desenvolver modelos de aprendizado de máquina capazes de predizer a toxicidade dérmica aguda de substâncias e disponibilizar esses modelos em um servidor on line para uso da comunidade científica. Metodologia: Os conjuntos de dados de compostos com toxicidade dérmica aguda foram compilados da literatura e preparados. Modelos de QSPR (do inglês, Quantitative Structure-property Relationships) classificatórios e multi-classificatórioss usando diferentes descritores moleculares e métodos de aprendizado de máquina foram desenvolvidos e validados. Posteriormente, os melhores modelos foram usados para triar a biblioteca CosIng como estudo de caso. Resultados e discussões: Após o preparo, 2.622 compostos únicos (384 tóxicos e 2.238 sem classificação/possivelmente não tóxicos) foram mantidos no conjunto de dados. Para evitar o desenvolvimento de modelos tendenciosos, o conjunto de dados foi balanceado e 768 compostos (384 tóxicos e 384 sem classificação/possivelmente não tóxicos) foram mantidos para modelagem. Os melhores modelos classificatórios foram desenvolvidos utilizando o método Randon Forest (RF), sendo que o melhor modelo apresentou valores de taxa de classificação correta (CCR) = 79%, sensibilidade (SE) = 80% e especificidade (SP) = 78%. Os melhores modelos foram então integrados em uma estratégia hierárquica de modelagem por consenso, que obteve melhores métricas como acurácia (ACC) = 74%. A triagem realizada na biblioteca da CosIng resultou na predição correta de 33 compostos como tóxicos. Conclusões: Os modelos de aprendizado de máquina desenvolvidos nesse trabalho se mostraram robustos e preditivos, e foram capazes de predizer eficientemente toxicidade dérmica aguda de substâncias químicas. Esses são os primeiros modelos computacionais desenvolvidos para esse endpoint que passaram por um rigoroso processo de curagem e validação, se mostrando valiosos na predição de novos compostos. Esses modelos foram disponibilizados em um servidor web para avaliação in silico de compostos ainda não testados, que pode ser acessado através do sítio https://stoptox.mml.unc.edu/Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESporUniversidade Federal de GoiásPrograma de Pós-graduação em Ciências Farmacêuticas (FF)UFGBrasilFaculdade de Farmácia - FF (RMG)Attribution-NonCommercial-NoDerivatives 4.0 Internationalinfo:eu-repo/semantics/openAccessToxicidade dérmica agudaAprendizado de máquinaQSPRMétodos alternativosAcute dermal toxicityMachine learningAlternative methodsCIENCIAS BIOLOGICAS::FARMACOLOGIA::FARMACOLOGIA GERALModelos de aprendizado de máquina para avaliação preditiva de toxicidade dérmica aguda de compostos químicosMachine learning models for predictive evaluation of acute dermal toxicity of chemicalsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis27500500500500225241reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.bc.ufg.br/tede/bitstreams/b74ce689-5a27-4c71-92a4-95db143ec780/download8a4605be74aa9ea9d79846c1fba20a33MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.bc.ufg.br/tede/bitstreams/2565ff3c-b067-4df2-966a-10b49338603f/download4460e5956bc1d1639be9ae6146a50347MD52ORIGINALDissertação - Steven Umualê Silva Hall - 2020.pdfDissertação - Steven Umualê Silva Hall - 2020.pdfapplication/pdf13464339http://repositorio.bc.ufg.br/tede/bitstreams/973e0293-4fb5-4562-a8b8-cff7c1a0a6ae/downloadd330c40e5153dca9af4adea5a5d81e79MD53tede/129282023-07-03 08:15:04.965http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accessoai:repositorio.bc.ufg.br:tede/12928http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttps://repositorio.bc.ufg.br/tedeserver/oai/requestgrt.bc@ufg.bropendoar:oai:repositorio.bc.ufg.br:tede/12342023-07-03T11:15:04Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| dc.title.pt_BR.fl_str_mv |
Modelos de aprendizado de máquina para avaliação preditiva de toxicidade dérmica aguda de compostos químicos |
| dc.title.alternative.eng.fl_str_mv |
Machine learning models for predictive evaluation of acute dermal toxicity of chemicals |
| title |
Modelos de aprendizado de máquina para avaliação preditiva de toxicidade dérmica aguda de compostos químicos |
| spellingShingle |
Modelos de aprendizado de máquina para avaliação preditiva de toxicidade dérmica aguda de compostos químicos Hall, Steven Umualê Silva Toxicidade dérmica aguda Aprendizado de máquina QSPR Métodos alternativos Acute dermal toxicity Machine learning Alternative methods CIENCIAS BIOLOGICAS::FARMACOLOGIA::FARMACOLOGIA GERAL |
| title_short |
Modelos de aprendizado de máquina para avaliação preditiva de toxicidade dérmica aguda de compostos químicos |
| title_full |
Modelos de aprendizado de máquina para avaliação preditiva de toxicidade dérmica aguda de compostos químicos |
| title_fullStr |
Modelos de aprendizado de máquina para avaliação preditiva de toxicidade dérmica aguda de compostos químicos |
| title_full_unstemmed |
Modelos de aprendizado de máquina para avaliação preditiva de toxicidade dérmica aguda de compostos químicos |
| title_sort |
Modelos de aprendizado de máquina para avaliação preditiva de toxicidade dérmica aguda de compostos químicos |
| author |
Hall, Steven Umualê Silva |
| author_facet |
Hall, Steven Umualê Silva |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
Andrade, Carolina Horta |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/2018317447324228 |
| dc.contributor.advisor-co1.fl_str_mv |
Alves, Vinicius de Medeiros |
| dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/7314022014345242 |
| dc.contributor.referee1.fl_str_mv |
Andrade, Carolina Horta |
| dc.contributor.referee2.fl_str_mv |
Scotti, Marcus Tullius |
| dc.contributor.referee3.fl_str_mv |
Neves, Bruno Junior |
| dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/0748535123716444 |
| dc.contributor.author.fl_str_mv |
Hall, Steven Umualê Silva |
| contributor_str_mv |
Andrade, Carolina Horta Alves, Vinicius de Medeiros Andrade, Carolina Horta Scotti, Marcus Tullius Neves, Bruno Junior |
| dc.subject.por.fl_str_mv |
Toxicidade dérmica aguda Aprendizado de máquina QSPR Métodos alternativos |
| topic |
Toxicidade dérmica aguda Aprendizado de máquina QSPR Métodos alternativos Acute dermal toxicity Machine learning Alternative methods CIENCIAS BIOLOGICAS::FARMACOLOGIA::FARMACOLOGIA GERAL |
| dc.subject.eng.fl_str_mv |
Acute dermal toxicity Machine learning Alternative methods |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS BIOLOGICAS::FARMACOLOGIA::FARMACOLOGIA GERAL |
| description |
Introduction: Acute dermal toxicity is a collection of adverse effects that a substance can cause in the first 24 hours of dermal exposure to this chemical. This toxicological property using animals by estimating the lethal dose (LD50), the dose required to kill 50% of individuals of a test population. However, due to public and political pressure on issues related to animal testing, alternative methods are becoming essential to reduce the costs and number of test animals. Computational methods such as machine learning methods have been presented as a reliable alternative to animal testing for hazard assessment. Objectives: The main goal of this study was to develop machine learning models capable of predicting acute dermal toxicity of chemicals, and to make these models available in an online server for the scientific community. Methodology: Acute dermal toxicity datasets where compiled from literature and rigorously curated. Classificatory and multi-classificatory QSPR (Quantitative Structure-property Relationships) models were developed using molecular descriptors and machine learning algorithms and where then used to screen the CosIng library as a case study. Results and discussion: After data curation, 2,622 compounds were kept in the dataset (384 toxic and 2238 non-toxic). To avoid developing biased models, the dataset was balanced, and 768 (384 toxic and 384 non-toxic) were kept for the modeling. The best classificatory models were generated with random forest algorithm and achieved CCR of 79%, SE of 80%, SP of 78%. The best models were used in an integrated hierarchical strategy that obtained ACC= 74% and Recall =74%. In total 33 compounds from CosIng were correctly predicted as toxic. Conclusions: The developed QSPR models were robust and predictive and are capable of predicting acute dermal toxicity efficiently. These are thde first models developed for this endpoint which passed by a rigorous data curation and validation process, being valuable in the prediction of toxicity from new untested compounds. These models are available in a web server through the address https://stoptox.mml.unc.edu . |
| publishDate |
2020 |
| dc.date.issued.fl_str_mv |
2020-12-16 |
| dc.date.accessioned.fl_str_mv |
2023-07-03T11:15:04Z |
| dc.date.available.fl_str_mv |
2023-07-03T11:15:04Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
HALL, S. U. S. Modelos de aprendizado de máquina para avaliação preditiva de toxicidade dérmica aguda de compostos químicos. 2020. 98 f. Dissertação (Mestrado em Ciências Farmacêuticas) - Universidade Federal de Goiás, Goiânia, 2020. |
| dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/12928 |
| dc.identifier.dark.fl_str_mv |
ark:/38995/0013000001spg |
| identifier_str_mv |
HALL, S. U. S. Modelos de aprendizado de máquina para avaliação preditiva de toxicidade dérmica aguda de compostos químicos. 2020. 98 f. Dissertação (Mestrado em Ciências Farmacêuticas) - Universidade Federal de Goiás, Goiânia, 2020. ark:/38995/0013000001spg |
| url |
http://repositorio.bc.ufg.br/tede/handle/tede/12928 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.program.fl_str_mv |
27 |
| dc.relation.confidence.fl_str_mv |
500 500 500 500 |
| dc.relation.department.fl_str_mv |
22 |
| dc.relation.cnpq.fl_str_mv |
524 |
| dc.relation.sponsorship.fl_str_mv |
1 |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
| dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Ciências Farmacêuticas (FF) |
| dc.publisher.initials.fl_str_mv |
UFG |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
Faculdade de Farmácia - FF (RMG) |
| publisher.none.fl_str_mv |
Universidade Federal de Goiás |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
| instname_str |
Universidade Federal de Goiás (UFG) |
| instacron_str |
UFG |
| institution |
UFG |
| reponame_str |
Repositório Institucional da UFG |
| collection |
Repositório Institucional da UFG |
| bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/b74ce689-5a27-4c71-92a4-95db143ec780/download http://repositorio.bc.ufg.br/tede/bitstreams/2565ff3c-b067-4df2-966a-10b49338603f/download http://repositorio.bc.ufg.br/tede/bitstreams/973e0293-4fb5-4562-a8b8-cff7c1a0a6ae/download |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 4460e5956bc1d1639be9ae6146a50347 d330c40e5153dca9af4adea5a5d81e79 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
| repository.mail.fl_str_mv |
grt.bc@ufg.br |
| _version_ |
1846536616129069056 |