Explorando paralelismo em big data no processamento de séries temporais de imagens de sensoriamento remoto

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Oliveira, Sávio Salvarino Teles de lattes
Orientador(a): Martins, Wellington Santos lattes
Banca de defesa: Martins, Wellington Santos, Costa, Fábio Moreira, Carvalho, Sérgio Teixeira de, Silva, Nilton Correia da, Davis Júnior, Clodoveu Augusto
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
dARK ID: ark:/38995/0013000007p6b
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Ciência da Computação em Rede UFG/UFMS (INF)
Departamento: Instituto de Informática - INF (RG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/10020
Resumo: The surface of planet Earth is changing at an unprecedented rate and the land use and land cover classification using remote sensing time series is now essential for identifying these changes. The TWDTW algorithm stands out in this task, but it has a quadratic complexity and high computational cost, making it difficult to use with Big Data. In this paper we tackle these problems by exploiting parallelism at both the vertical (multicore / manycore) and horizontal (cluster - distributed system) levels, in an integrated way for high performance. In the vertical dimension, we propose a parallel algorithm (P- INDEX) for the calculation of remote sensing indices, and another (P-TWDTW) for the calculation of similarity between time series. The speedup of P-INDEX was up to 9 times relative to the sequential algorithm in processing all images, while P-TWDTW was up to 12 times faster than its C++ centralized version and 246 times faster than the original in R TWDTW algorithm. In addition to enabling the quick calculation of a more sophisticated similarity measure, P- TWDTW also contributed to the generation of meta-characteristics for more robust machine learning methods. This increased the accuracy of the time series classification from 78% using TWDTW with KNN to almost 94% using the meta-characteristics obtained from P-TWDTW with SVM. In the horizontal dimension, we propose a distributed platform (BigSensing) that enables efficient handling of large volumes of remote sensing data. The platform includes a smart query engine that is able to choose, in real time, the best system to filter and retrieve data according to the spatial and temporal constraints of the query, with a nearly 22% reduction in response time over SciDB.
id UFG-2_9c457d89ef6ff32978efb0cf0df5e805
oai_identifier_str oai:repositorio.bc.ufg.br:tede/10020
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Martins, Wellington Santoshttp://lattes.cnpq.br/3041686206689904Rodrigues, Vagner José do Sacramentohttp://lattes.cnpq.br/4148896613580056Martins, Wellington SantosCosta, Fábio MoreiraCarvalho, Sérgio Teixeira deSilva, Nilton Correia daDavis Júnior, Clodoveu Augustohttp://lattes.cnpq.br/1905829499839846Oliveira, Sávio Salvarino Teles de2019-09-16T12:00:07Z2019-08-30OLIVEIRA, S. S. T. Explorando paralelismo em big data no processamento de séries temporais de imagens de sensoriamento remoto. 2019. 128 f. Tese (Doutorado em Ciência da Computação em Rede) - Universidade Federal de Goiás, Goiânia, 2019.http://repositorio.bc.ufg.br/tede/handle/tede/10020ark:/38995/0013000007p6bThe surface of planet Earth is changing at an unprecedented rate and the land use and land cover classification using remote sensing time series is now essential for identifying these changes. The TWDTW algorithm stands out in this task, but it has a quadratic complexity and high computational cost, making it difficult to use with Big Data. In this paper we tackle these problems by exploiting parallelism at both the vertical (multicore / manycore) and horizontal (cluster - distributed system) levels, in an integrated way for high performance. In the vertical dimension, we propose a parallel algorithm (P- INDEX) for the calculation of remote sensing indices, and another (P-TWDTW) for the calculation of similarity between time series. The speedup of P-INDEX was up to 9 times relative to the sequential algorithm in processing all images, while P-TWDTW was up to 12 times faster than its C++ centralized version and 246 times faster than the original in R TWDTW algorithm. In addition to enabling the quick calculation of a more sophisticated similarity measure, P- TWDTW also contributed to the generation of meta-characteristics for more robust machine learning methods. This increased the accuracy of the time series classification from 78% using TWDTW with KNN to almost 94% using the meta-characteristics obtained from P-TWDTW with SVM. In the horizontal dimension, we propose a distributed platform (BigSensing) that enables efficient handling of large volumes of remote sensing data. The platform includes a smart query engine that is able to choose, in real time, the best system to filter and retrieve data according to the spatial and temporal constraints of the query, with a nearly 22% reduction in response time over SciDB.A superfície do planeta Terra está mudando a uma taxa sem precedentes e a classificação do tipo de uso e cobertura do solo, utilizando séries temporais de sensoriamento remoto, é hoje imprescindível para a identificação dessas mudanças. O algoritmo TWDTW se destaca nesta tarefa, mas possui complexidade quadrática com alto custo computacional, dificultando o seu uso em grandes volumes de dados (Big Data). Neste trabalho atacamos esses problemas explorando paralelismo tanto em nível vertical (multicore/manycore) quanto horizontal (cluster de computadores), de forma integrada para oferecer alto desempenho. Na dimensão vertical, propomos um algoritmo paralelo (P-INDEX) para o cálculo dos índices de sensoriamento remoto, e outro (P-TWDTW) para o cálculo de medidas de similaridade entre séries temporais. O speedup do algoritmo P-INDEX foi de até 9 vezes no processamento de todas as imagens em relação ao algoritmo sequencial, enquanto o P-TWDTW conseguiu ser até 12 vezes mais rápido que sua versão centralizada em C++ e 246 vezes mais rápido que o algoritmo TWDTW original em R. Além de viabilizar o cálculo rápido de uma medida de similaridade mais sofisticada, a exploração de paralelismo no P-TWDTW também contribuiu para que essas medidas fossem usadas como meta- características para métodos de aprendizado de máquina mais robustos. Isso aumentou a acurácia da classificação das séries temporais de 78%, utilizando o TWDTW com o KNN, para quase 94%, utilizando as meta-características obtidas a partir do P-TWDTW com o SVM. Na dimensão horizontal, propomos uma plataforma distribuída (BigSensing) que permite o tratamento eficiente de grandes volumes de dados de sensoriamento remoto. A plataforma inclui um motor inteligente de busca que é capaz de escolher, em tempo real, o melhor sistema para filtrar e recuperar os dados, de acordo com as restrições espaciais e temporais da consulta, tendo uma redução de quase 22% do tempo de resposta em relação ao SciDB na filtragem e recuperação de dados.Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEGapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Ciência da Computação em Rede UFG/UFMS (INF)UFGBrasilInstituto de Informática - INF (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessSéries temporaisSensoriamento remotoSistemas distribuídosProcessamento paraleloBig dataTime seriesRemote sensingParallel processingCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOExplorando paralelismo em big data no processamento de séries temporais de imagens de sensoriamento remotoExploring parallelism in big data on remote sensing image time series processinginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis7383127587728995171600600600600-77122667346336447683671711205811204509-961409807440757778reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/2a84f3ec-fad0-4d14-b19a-b829a839bc31/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/dce1f346-220c-4add-9c11-846b731be200/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/c203d62c-67c5-455c-81e5-b3db6fec53b8/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/9ec14586-5e2b-4043-bd73-901b6f5b7bff/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALTese - Sávio Salvarino Teles de Oliveira - 2019.pdfTese - Sávio Salvarino Teles de Oliveira - 2019.pdfapplication/pdf6810556http://repositorio.bc.ufg.br/tede/bitstreams/12e13f5f-2e91-4e30-b863-5539288b4395/downloada3ad084daee37a7041bfaeed7cc60c15MD55tede/100202019-09-16 09:00:07.423http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/10020http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttps://repositorio.bc.ufg.br/tedeserver/oai/requestgrt.bc@ufg.bropendoar:oai:repositorio.bc.ufg.br:tede/12342019-09-16T12:00:07Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.eng.fl_str_mv Explorando paralelismo em big data no processamento de séries temporais de imagens de sensoriamento remoto
dc.title.alternative.eng.fl_str_mv Exploring parallelism in big data on remote sensing image time series processing
title Explorando paralelismo em big data no processamento de séries temporais de imagens de sensoriamento remoto
spellingShingle Explorando paralelismo em big data no processamento de séries temporais de imagens de sensoriamento remoto
Oliveira, Sávio Salvarino Teles de
Séries temporais
Sensoriamento remoto
Sistemas distribuídos
Processamento paralelo
Big data
Time series
Remote sensing
Parallel processing
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Explorando paralelismo em big data no processamento de séries temporais de imagens de sensoriamento remoto
title_full Explorando paralelismo em big data no processamento de séries temporais de imagens de sensoriamento remoto
title_fullStr Explorando paralelismo em big data no processamento de séries temporais de imagens de sensoriamento remoto
title_full_unstemmed Explorando paralelismo em big data no processamento de séries temporais de imagens de sensoriamento remoto
title_sort Explorando paralelismo em big data no processamento de séries temporais de imagens de sensoriamento remoto
author Oliveira, Sávio Salvarino Teles de
author_facet Oliveira, Sávio Salvarino Teles de
author_role author
dc.contributor.advisor1.fl_str_mv Martins, Wellington Santos
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3041686206689904
dc.contributor.advisor-co1.fl_str_mv Rodrigues, Vagner José do Sacramento
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/4148896613580056
dc.contributor.referee1.fl_str_mv Martins, Wellington Santos
dc.contributor.referee2.fl_str_mv Costa, Fábio Moreira
dc.contributor.referee3.fl_str_mv Carvalho, Sérgio Teixeira de
dc.contributor.referee4.fl_str_mv Silva, Nilton Correia da
dc.contributor.referee5.fl_str_mv Davis Júnior, Clodoveu Augusto
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/1905829499839846
dc.contributor.author.fl_str_mv Oliveira, Sávio Salvarino Teles de
contributor_str_mv Martins, Wellington Santos
Rodrigues, Vagner José do Sacramento
Martins, Wellington Santos
Costa, Fábio Moreira
Carvalho, Sérgio Teixeira de
Silva, Nilton Correia da
Davis Júnior, Clodoveu Augusto
dc.subject.por.fl_str_mv Séries temporais
Sensoriamento remoto
Sistemas distribuídos
Processamento paralelo
topic Séries temporais
Sensoriamento remoto
Sistemas distribuídos
Processamento paralelo
Big data
Time series
Remote sensing
Parallel processing
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.eng.fl_str_mv Big data
Time series
Remote sensing
Parallel processing
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description The surface of planet Earth is changing at an unprecedented rate and the land use and land cover classification using remote sensing time series is now essential for identifying these changes. The TWDTW algorithm stands out in this task, but it has a quadratic complexity and high computational cost, making it difficult to use with Big Data. In this paper we tackle these problems by exploiting parallelism at both the vertical (multicore / manycore) and horizontal (cluster - distributed system) levels, in an integrated way for high performance. In the vertical dimension, we propose a parallel algorithm (P- INDEX) for the calculation of remote sensing indices, and another (P-TWDTW) for the calculation of similarity between time series. The speedup of P-INDEX was up to 9 times relative to the sequential algorithm in processing all images, while P-TWDTW was up to 12 times faster than its C++ centralized version and 246 times faster than the original in R TWDTW algorithm. In addition to enabling the quick calculation of a more sophisticated similarity measure, P- TWDTW also contributed to the generation of meta-characteristics for more robust machine learning methods. This increased the accuracy of the time series classification from 78% using TWDTW with KNN to almost 94% using the meta-characteristics obtained from P-TWDTW with SVM. In the horizontal dimension, we propose a distributed platform (BigSensing) that enables efficient handling of large volumes of remote sensing data. The platform includes a smart query engine that is able to choose, in real time, the best system to filter and retrieve data according to the spatial and temporal constraints of the query, with a nearly 22% reduction in response time over SciDB.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-09-16T12:00:07Z
dc.date.issued.fl_str_mv 2019-08-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv OLIVEIRA, S. S. T. Explorando paralelismo em big data no processamento de séries temporais de imagens de sensoriamento remoto. 2019. 128 f. Tese (Doutorado em Ciência da Computação em Rede) - Universidade Federal de Goiás, Goiânia, 2019.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/10020
dc.identifier.dark.fl_str_mv ark:/38995/0013000007p6b
identifier_str_mv OLIVEIRA, S. S. T. Explorando paralelismo em big data no processamento de séries temporais de imagens de sensoriamento remoto. 2019. 128 f. Tese (Doutorado em Ciência da Computação em Rede) - Universidade Federal de Goiás, Goiânia, 2019.
ark:/38995/0013000007p6b
url http://repositorio.bc.ufg.br/tede/handle/tede/10020
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 7383127587728995171
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -7712266734633644768
dc.relation.cnpq.fl_str_mv 3671711205811204509
dc.relation.sponsorship.fl_str_mv -961409807440757778
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Ciência da Computação em Rede UFG/UFMS (INF)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Informática - INF (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/2a84f3ec-fad0-4d14-b19a-b829a839bc31/download
http://repositorio.bc.ufg.br/tede/bitstreams/dce1f346-220c-4add-9c11-846b731be200/download
http://repositorio.bc.ufg.br/tede/bitstreams/c203d62c-67c5-455c-81e5-b3db6fec53b8/download
http://repositorio.bc.ufg.br/tede/bitstreams/9ec14586-5e2b-4043-bd73-901b6f5b7bff/download
http://repositorio.bc.ufg.br/tede/bitstreams/12e13f5f-2e91-4e30-b863-5539288b4395/download
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
a3ad084daee37a7041bfaeed7cc60c15
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv grt.bc@ufg.br
_version_ 1846536685253296128