Explorando paralelismo em big data no processamento de séries temporais de imagens de sensoriamento remoto
| Ano de defesa: | 2019 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | , , , , |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| dARK ID: | ark:/38995/0013000007p6b |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Goiás
|
| Programa de Pós-Graduação: |
Programa de Pós-graduação em Ciência da Computação em Rede UFG/UFMS (INF)
|
| Departamento: |
Instituto de Informática - INF (RG)
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | http://repositorio.bc.ufg.br/tede/handle/tede/10020 |
Resumo: | The surface of planet Earth is changing at an unprecedented rate and the land use and land cover classification using remote sensing time series is now essential for identifying these changes. The TWDTW algorithm stands out in this task, but it has a quadratic complexity and high computational cost, making it difficult to use with Big Data. In this paper we tackle these problems by exploiting parallelism at both the vertical (multicore / manycore) and horizontal (cluster - distributed system) levels, in an integrated way for high performance. In the vertical dimension, we propose a parallel algorithm (P- INDEX) for the calculation of remote sensing indices, and another (P-TWDTW) for the calculation of similarity between time series. The speedup of P-INDEX was up to 9 times relative to the sequential algorithm in processing all images, while P-TWDTW was up to 12 times faster than its C++ centralized version and 246 times faster than the original in R TWDTW algorithm. In addition to enabling the quick calculation of a more sophisticated similarity measure, P- TWDTW also contributed to the generation of meta-characteristics for more robust machine learning methods. This increased the accuracy of the time series classification from 78% using TWDTW with KNN to almost 94% using the meta-characteristics obtained from P-TWDTW with SVM. In the horizontal dimension, we propose a distributed platform (BigSensing) that enables efficient handling of large volumes of remote sensing data. The platform includes a smart query engine that is able to choose, in real time, the best system to filter and retrieve data according to the spatial and temporal constraints of the query, with a nearly 22% reduction in response time over SciDB. |
| id |
UFG-2_9c457d89ef6ff32978efb0cf0df5e805 |
|---|---|
| oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/10020 |
| network_acronym_str |
UFG-2 |
| network_name_str |
Repositório Institucional da UFG |
| repository_id_str |
|
| spelling |
Martins, Wellington Santoshttp://lattes.cnpq.br/3041686206689904Rodrigues, Vagner José do Sacramentohttp://lattes.cnpq.br/4148896613580056Martins, Wellington SantosCosta, Fábio MoreiraCarvalho, Sérgio Teixeira deSilva, Nilton Correia daDavis Júnior, Clodoveu Augustohttp://lattes.cnpq.br/1905829499839846Oliveira, Sávio Salvarino Teles de2019-09-16T12:00:07Z2019-08-30OLIVEIRA, S. S. T. Explorando paralelismo em big data no processamento de séries temporais de imagens de sensoriamento remoto. 2019. 128 f. Tese (Doutorado em Ciência da Computação em Rede) - Universidade Federal de Goiás, Goiânia, 2019.http://repositorio.bc.ufg.br/tede/handle/tede/10020ark:/38995/0013000007p6bThe surface of planet Earth is changing at an unprecedented rate and the land use and land cover classification using remote sensing time series is now essential for identifying these changes. The TWDTW algorithm stands out in this task, but it has a quadratic complexity and high computational cost, making it difficult to use with Big Data. In this paper we tackle these problems by exploiting parallelism at both the vertical (multicore / manycore) and horizontal (cluster - distributed system) levels, in an integrated way for high performance. In the vertical dimension, we propose a parallel algorithm (P- INDEX) for the calculation of remote sensing indices, and another (P-TWDTW) for the calculation of similarity between time series. The speedup of P-INDEX was up to 9 times relative to the sequential algorithm in processing all images, while P-TWDTW was up to 12 times faster than its C++ centralized version and 246 times faster than the original in R TWDTW algorithm. In addition to enabling the quick calculation of a more sophisticated similarity measure, P- TWDTW also contributed to the generation of meta-characteristics for more robust machine learning methods. This increased the accuracy of the time series classification from 78% using TWDTW with KNN to almost 94% using the meta-characteristics obtained from P-TWDTW with SVM. In the horizontal dimension, we propose a distributed platform (BigSensing) that enables efficient handling of large volumes of remote sensing data. The platform includes a smart query engine that is able to choose, in real time, the best system to filter and retrieve data according to the spatial and temporal constraints of the query, with a nearly 22% reduction in response time over SciDB.A superfície do planeta Terra está mudando a uma taxa sem precedentes e a classificação do tipo de uso e cobertura do solo, utilizando séries temporais de sensoriamento remoto, é hoje imprescindível para a identificação dessas mudanças. O algoritmo TWDTW se destaca nesta tarefa, mas possui complexidade quadrática com alto custo computacional, dificultando o seu uso em grandes volumes de dados (Big Data). Neste trabalho atacamos esses problemas explorando paralelismo tanto em nível vertical (multicore/manycore) quanto horizontal (cluster de computadores), de forma integrada para oferecer alto desempenho. Na dimensão vertical, propomos um algoritmo paralelo (P-INDEX) para o cálculo dos índices de sensoriamento remoto, e outro (P-TWDTW) para o cálculo de medidas de similaridade entre séries temporais. O speedup do algoritmo P-INDEX foi de até 9 vezes no processamento de todas as imagens em relação ao algoritmo sequencial, enquanto o P-TWDTW conseguiu ser até 12 vezes mais rápido que sua versão centralizada em C++ e 246 vezes mais rápido que o algoritmo TWDTW original em R. Além de viabilizar o cálculo rápido de uma medida de similaridade mais sofisticada, a exploração de paralelismo no P-TWDTW também contribuiu para que essas medidas fossem usadas como meta- características para métodos de aprendizado de máquina mais robustos. Isso aumentou a acurácia da classificação das séries temporais de 78%, utilizando o TWDTW com o KNN, para quase 94%, utilizando as meta-características obtidas a partir do P-TWDTW com o SVM. Na dimensão horizontal, propomos uma plataforma distribuída (BigSensing) que permite o tratamento eficiente de grandes volumes de dados de sensoriamento remoto. A plataforma inclui um motor inteligente de busca que é capaz de escolher, em tempo real, o melhor sistema para filtrar e recuperar os dados, de acordo com as restrições espaciais e temporais da consulta, tendo uma redução de quase 22% do tempo de resposta em relação ao SciDB na filtragem e recuperação de dados.Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEGapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Ciência da Computação em Rede UFG/UFMS (INF)UFGBrasilInstituto de Informática - INF (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessSéries temporaisSensoriamento remotoSistemas distribuídosProcessamento paraleloBig dataTime seriesRemote sensingParallel processingCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOExplorando paralelismo em big data no processamento de séries temporais de imagens de sensoriamento remotoExploring parallelism in big data on remote sensing image time series processinginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis7383127587728995171600600600600-77122667346336447683671711205811204509-961409807440757778reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/2a84f3ec-fad0-4d14-b19a-b829a839bc31/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/dce1f346-220c-4add-9c11-846b731be200/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/c203d62c-67c5-455c-81e5-b3db6fec53b8/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/9ec14586-5e2b-4043-bd73-901b6f5b7bff/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALTese - Sávio Salvarino Teles de Oliveira - 2019.pdfTese - Sávio Salvarino Teles de Oliveira - 2019.pdfapplication/pdf6810556http://repositorio.bc.ufg.br/tede/bitstreams/12e13f5f-2e91-4e30-b863-5539288b4395/downloada3ad084daee37a7041bfaeed7cc60c15MD55tede/100202019-09-16 09:00:07.423http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/10020http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttps://repositorio.bc.ufg.br/tedeserver/oai/requestgrt.bc@ufg.bropendoar:oai:repositorio.bc.ufg.br:tede/12342019-09-16T12:00:07Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
| dc.title.eng.fl_str_mv |
Explorando paralelismo em big data no processamento de séries temporais de imagens de sensoriamento remoto |
| dc.title.alternative.eng.fl_str_mv |
Exploring parallelism in big data on remote sensing image time series processing |
| title |
Explorando paralelismo em big data no processamento de séries temporais de imagens de sensoriamento remoto |
| spellingShingle |
Explorando paralelismo em big data no processamento de séries temporais de imagens de sensoriamento remoto Oliveira, Sávio Salvarino Teles de Séries temporais Sensoriamento remoto Sistemas distribuídos Processamento paralelo Big data Time series Remote sensing Parallel processing CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| title_short |
Explorando paralelismo em big data no processamento de séries temporais de imagens de sensoriamento remoto |
| title_full |
Explorando paralelismo em big data no processamento de séries temporais de imagens de sensoriamento remoto |
| title_fullStr |
Explorando paralelismo em big data no processamento de séries temporais de imagens de sensoriamento remoto |
| title_full_unstemmed |
Explorando paralelismo em big data no processamento de séries temporais de imagens de sensoriamento remoto |
| title_sort |
Explorando paralelismo em big data no processamento de séries temporais de imagens de sensoriamento remoto |
| author |
Oliveira, Sávio Salvarino Teles de |
| author_facet |
Oliveira, Sávio Salvarino Teles de |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
Martins, Wellington Santos |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3041686206689904 |
| dc.contributor.advisor-co1.fl_str_mv |
Rodrigues, Vagner José do Sacramento |
| dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/4148896613580056 |
| dc.contributor.referee1.fl_str_mv |
Martins, Wellington Santos |
| dc.contributor.referee2.fl_str_mv |
Costa, Fábio Moreira |
| dc.contributor.referee3.fl_str_mv |
Carvalho, Sérgio Teixeira de |
| dc.contributor.referee4.fl_str_mv |
Silva, Nilton Correia da |
| dc.contributor.referee5.fl_str_mv |
Davis Júnior, Clodoveu Augusto |
| dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/1905829499839846 |
| dc.contributor.author.fl_str_mv |
Oliveira, Sávio Salvarino Teles de |
| contributor_str_mv |
Martins, Wellington Santos Rodrigues, Vagner José do Sacramento Martins, Wellington Santos Costa, Fábio Moreira Carvalho, Sérgio Teixeira de Silva, Nilton Correia da Davis Júnior, Clodoveu Augusto |
| dc.subject.por.fl_str_mv |
Séries temporais Sensoriamento remoto Sistemas distribuídos Processamento paralelo |
| topic |
Séries temporais Sensoriamento remoto Sistemas distribuídos Processamento paralelo Big data Time series Remote sensing Parallel processing CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| dc.subject.eng.fl_str_mv |
Big data Time series Remote sensing Parallel processing |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| description |
The surface of planet Earth is changing at an unprecedented rate and the land use and land cover classification using remote sensing time series is now essential for identifying these changes. The TWDTW algorithm stands out in this task, but it has a quadratic complexity and high computational cost, making it difficult to use with Big Data. In this paper we tackle these problems by exploiting parallelism at both the vertical (multicore / manycore) and horizontal (cluster - distributed system) levels, in an integrated way for high performance. In the vertical dimension, we propose a parallel algorithm (P- INDEX) for the calculation of remote sensing indices, and another (P-TWDTW) for the calculation of similarity between time series. The speedup of P-INDEX was up to 9 times relative to the sequential algorithm in processing all images, while P-TWDTW was up to 12 times faster than its C++ centralized version and 246 times faster than the original in R TWDTW algorithm. In addition to enabling the quick calculation of a more sophisticated similarity measure, P- TWDTW also contributed to the generation of meta-characteristics for more robust machine learning methods. This increased the accuracy of the time series classification from 78% using TWDTW with KNN to almost 94% using the meta-characteristics obtained from P-TWDTW with SVM. In the horizontal dimension, we propose a distributed platform (BigSensing) that enables efficient handling of large volumes of remote sensing data. The platform includes a smart query engine that is able to choose, in real time, the best system to filter and retrieve data according to the spatial and temporal constraints of the query, with a nearly 22% reduction in response time over SciDB. |
| publishDate |
2019 |
| dc.date.accessioned.fl_str_mv |
2019-09-16T12:00:07Z |
| dc.date.issued.fl_str_mv |
2019-08-30 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
OLIVEIRA, S. S. T. Explorando paralelismo em big data no processamento de séries temporais de imagens de sensoriamento remoto. 2019. 128 f. Tese (Doutorado em Ciência da Computação em Rede) - Universidade Federal de Goiás, Goiânia, 2019. |
| dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/10020 |
| dc.identifier.dark.fl_str_mv |
ark:/38995/0013000007p6b |
| identifier_str_mv |
OLIVEIRA, S. S. T. Explorando paralelismo em big data no processamento de séries temporais de imagens de sensoriamento remoto. 2019. 128 f. Tese (Doutorado em Ciência da Computação em Rede) - Universidade Federal de Goiás, Goiânia, 2019. ark:/38995/0013000007p6b |
| url |
http://repositorio.bc.ufg.br/tede/handle/tede/10020 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.program.fl_str_mv |
7383127587728995171 |
| dc.relation.confidence.fl_str_mv |
600 600 600 600 |
| dc.relation.department.fl_str_mv |
-7712266734633644768 |
| dc.relation.cnpq.fl_str_mv |
3671711205811204509 |
| dc.relation.sponsorship.fl_str_mv |
-961409807440757778 |
| dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
| dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Ciência da Computação em Rede UFG/UFMS (INF) |
| dc.publisher.initials.fl_str_mv |
UFG |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
Instituto de Informática - INF (RG) |
| publisher.none.fl_str_mv |
Universidade Federal de Goiás |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
| instname_str |
Universidade Federal de Goiás (UFG) |
| instacron_str |
UFG |
| institution |
UFG |
| reponame_str |
Repositório Institucional da UFG |
| collection |
Repositório Institucional da UFG |
| bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/2a84f3ec-fad0-4d14-b19a-b829a839bc31/download http://repositorio.bc.ufg.br/tede/bitstreams/dce1f346-220c-4add-9c11-846b731be200/download http://repositorio.bc.ufg.br/tede/bitstreams/c203d62c-67c5-455c-81e5-b3db6fec53b8/download http://repositorio.bc.ufg.br/tede/bitstreams/9ec14586-5e2b-4043-bd73-901b6f5b7bff/download http://repositorio.bc.ufg.br/tede/bitstreams/12e13f5f-2e91-4e30-b863-5539288b4395/download |
| bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e a3ad084daee37a7041bfaeed7cc60c15 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
| repository.mail.fl_str_mv |
grt.bc@ufg.br |
| _version_ |
1846536685253296128 |