Classificação dinâmica de nós em redes em malha sem fio

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Guedes, Diego Américo lattes
Orientador(a): Cardoso, Kleber Vieira lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Programa de Pós-graduação em Ciência da Computação (INF)
Departamento: Instituto de Informática - INF (RG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/3049
Resumo: In this work we present and evaluate a modeling methodology that describes the creation of a topology for wireless mesh networks, and how this topology changes over time. The modeling methodology is based on network science, which is a multidisciplinary research area that has a lot of tools to help in the study and analysis of networks. In wireless mesh networks, the relative importance of the nodes is often related to the topological aspects, and data flow. However, due to the dynamics of the network, the relative importance of the nodes may vary in time. In the context of network science, the concept of centrality metric represents the relative importance of a node in the network. In this work we show also that the current centrality metrics are not able to rank properly the nodes in wireless mesh networks. Then we propose a new metric of centrality that ranks the most important nodes in a wireless mesh network over time. We evaluate our proposal using data from a case study of the proposed modeling methodology and also from real wireless mesh networks, achieving satisfactory performance. The characteristics of our metric make it a useful tool for monitoring dynamic networks.
id UFG-2_a533ce4852f339ebf5eb34b5b8c8fd84
oai_identifier_str oai:repositorio.bc.ufg.br:tede/3049
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Cardoso, Kleber Vieirahttp://lattes.cnpq.br/0268732896111424Ziviani, Arturhttp://lattes.cnpq.br/0472856771871140http://lattes.cnpq.br/1455013887760441Guedes, Diego Américo2014-09-11T11:50:01Z2014-09-11http://repositorio.bc.ufg.br/tede/handle/tede/3049In this work we present and evaluate a modeling methodology that describes the creation of a topology for wireless mesh networks, and how this topology changes over time. The modeling methodology is based on network science, which is a multidisciplinary research area that has a lot of tools to help in the study and analysis of networks. In wireless mesh networks, the relative importance of the nodes is often related to the topological aspects, and data flow. However, due to the dynamics of the network, the relative importance of the nodes may vary in time. In the context of network science, the concept of centrality metric represents the relative importance of a node in the network. In this work we show also that the current centrality metrics are not able to rank properly the nodes in wireless mesh networks. Then we propose a new metric of centrality that ranks the most important nodes in a wireless mesh network over time. We evaluate our proposal using data from a case study of the proposed modeling methodology and also from real wireless mesh networks, achieving satisfactory performance. The characteristics of our metric make it a useful tool for monitoring dynamic networks.Neste trabalho, apresentamos e avaliamos uma modelagem que descreve a criação de uma topologia para redes em malha sem fio e como essa se altera no tempo. A modelagem é baseada em ciência das redes (network science), uma área multidisciplinar de pesquisa que possui uma grande quantidade de ferramentas para auxiliar no estudo e análise de redes. Em redes em malha sem fio, a importância relativa dos nós é frequentemente relacionada a aspectos topológicos e ao fluxo de dados. Entretanto, devido à dinamicidade da rede, a importância relativa de um nó pode variar no tempo. No contexto de ciência de redes, o conceito de métricas de centralidade reflete a importância relativa de um nó na rede. Neste trabalho, mostramos também que as métricas atuais de centralidade não são capazes de classificar de maneira adequada os nós em redes em malha sem fio. Propomos então uma nova métrica de centralidade que classifica os nós mais importantes em uma rede em malha sem fio ao longo do tempo. Avaliamos nossa proposta com dados obtidos de um estudo de caso da modelagem proposta e de redes em malha sem fio reais, obtendo desempenho satisfatório. As características da nossa métrica a tornam uma ferramenta útil para monitoramento de redes dinâmicas.Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2014-09-11T11:50:01Z No. of bitstreams: 2 Dissertacao Diego Americo Guedes.pdf: 971567 bytes, checksum: a39a61e190ff600e318da0dd24eb108c (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)Made available in DSpace on 2014-09-11T11:50:01Z (GMT). No. of bitstreams: 2 Dissertacao Diego Americo Guedes.pdf: 971567 bytes, checksum: a39a61e190ff600e318da0dd24eb108c (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfhttp://repositorio.bc.ufg.br/tede/retrieve/7486/Dissertacao%20Diego%20Americo%20Guedes.pdf.jpgpor[1] Localização dos nós na Athens Wireless Metropolitan Network. http://wind.awmn.net/?page=gmap , July 2013. [2] Localização dos nós na Seattle Wireless. http://map.seattlewireless.net , July 2013. [3] AGUAYO, D.; BICKET, J.; BISWAS, S.; JUDD, G.; MORRIS, R. Link-level measurements from an 802.11b mesh network. SIGCOMM Computer Communication Review, 34(4):121–132, August 2004. [4] AIELLO, W.; CHUNG, F.; LU, L. A random graph model for massive graphs. In: Proceedings of the thirty-second annual ACM symposium on Theory of computing, STOC ’00, p. 171–180, 2000. [5] AIELLO, W.; CHUNG, F.; LU, L. Handbook of massive data sets. chapter Random evolution in massive graphs, p. 97–122. Kluwer Academic Publishers, 2002. [6] AKYILDIZ, I. F.; WANG, X.; WANG, W. Wireless mesh networks: a survey. Comput. Netw. ISDN Syst., 47(4):445–487, 2005. [7] ALBERT, R.; JEONG, H.; BARABASI, A. L. The diameter of the world wide web. Nature, 401:130–131, 1999. [8] ALMIRON, M. G.; RAMOS, H. S.; OLIVEIRA, E. M.; AO G. M. DE MENEZES, J.; GUIDONI, D. L.; STANCIOLI, P. O.; DA CUNHA, F. D.; DE AQUINO, A. L. L.; MINI, R. A. F.; FRERY, A. C.; LOUREIRO, A. A. F. Redes complexas na modelagem de redes de computadores. Minicurso SBRC, 2010. [9] AMARAL, L. A.; OTTINO, J. M. Complex networks. The European Physical Journal B-Condensed Matter and Complex Systems, 38(2):147–162, 2004. [10] ANTIQUEIRA, L.; NUNES, M. G. V.; JÚNIOR, O. N. O.; COSTA, L. F. Complex networks in the assessment of quality text. In Physics, 2005. [11] BARABÁSI, A.-L.; ALBERT, R. Emergence of scaling in random networks. Science, 286(5439):509–512, 1999. [12] BARABÁSI, A.-L.; ALBERT, R.; JEONG, H. Scale-free characteristics of random networks: the topology of the world-wide web. Physica A: Statistical Mechanics and its Applications, 281(1-4):69–77, 2000. [13] BARABASI, A.-L.; OLTVAI, Z. N. Network biology: understanding the cell’s functional organization. Nature Reviews Genetics, 5(2):101–113, 2004. [14] BENDER, E. A.; CANFIELD, E. R. The asymptotic number of labeled graphs with given degree sequences. Journal of Combinatorial Theory, Series A, 24(3):296– 307, May 1978. [15] BERMAN, K. A. Vulnerability of scheduled networks and a generalization of Menger’s Theorem. Networks, 28(3):125–134, 1996. [16] BHADRA, S.; FERREIRA, A. Complexity of connected components in evolving graphs and the computation of multicast trees in dynamic networks. In: Proc. 2nd Intl. Conference on Ad Hoc Networks and Wirelsss (AdHoc-Now), p. 259–270, 2003. [17] BIANCHI, G. Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3):535–547, 2000. [18] BICKET, J.; AGUAYO, D.; BISWAS, S.; MORRIS, R. Architecture and evaluation of an unplanned 802.11b mesh network. In: International conference on Mobile computing and networking, p. 31–42, 2005. [19] BICKET, J. C. Bit-rate selection in wireless networks. Master’s thesis, Master of Science in Computer Science and Engineering at the Massachusetts Institute of Technology, 2005. [20] BISWAS, S.; MORRIS, R. Opportunistic routing in multi-hop wireless networks. SIGCOMM Computer Communication Review, 34(1):69–74, 2004. [21] BONACICH, P. Factoring and weighting approaches to status scores and clique identification. Journal of Mathematical Sociology, 2(1):113–120, 1972. [22] BONACICH, P. Power and centrality: a family of measures. American Journal of Sociology, 92(5):1170–1182, 1987. [23] BONACICH, P.; LLOYD, P. Eigenvector-like measures of centrality for asymmetric relations. Social Networks, 23(3):191–201, 2001. [24] BONDY, J. A.; MURTY, U. S. R. Graph theory. Springer, 2008. [25] BORGATTI, S. P. Centrality and network flow. Social Networks, 27(1):55–71, 2005. [26] BÖRNER, K.; SANYAL, S.; VESPIGNANI, A. Network science. Annual Review of Information Science and Technology, 41(1):537–607, 2007. [27] Bornholdt, S.; Schuster, H. G., editors. Handbook of graphs and networks: from the genome to the Internet. John Wiley & Sons, Inc., 2003. [28] BRANDES, U.; FLEISCHER, D. Centrality measures based on current flow. In: Conference on Theoretical Aspects of Computer Science (STACS), p. 533–544. Springer-Verlag, 2005. [29] BRIN, S.; PAGE, L. The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems, 30(1-7):107–117, 1998. [30] CALDEIRA, S. M. G. Lendo Bohr ao pé da letra: análise de elementos conceituais em escritos de Niels Bohr. Master’s thesis, Universidade Federal da Bahia, 2007. [31] Carrington, P. J.; Scott, J.; Wasserman, S., editors. Models and methods in social network analysis. Cambridge University Press, 2005. [32] CASTEIGTS, A.; FLOCCHINI, P.; QUATTROCIOCCHI, W.; SANTORO, N. Timevarying graphs and dynamic networks. International Journal of Parallel, Emergent and Distributed Systems, 2012. [33] CHAINTREAU, A.; MTIBAA, A.; MASSOULIE, L.; DIOT, C. The diameter of opportunistic mobile networks. In: Proceedings of the 2007 ACM CoNEXT conference, CoNEXT ’07, p. 1–12, 2007. [34] CHEN, Q.; HYUNSEOK, Q. C.; GOVINDAN, R.; JAMIN, S.; SHENKER, S. J.; WILLINGER, W. The origin of power laws in internet topologies revisited. In: In IEEE INFOCOM 2002, p. 608–617, 2002. [35] COHEN, J.; PIRES, K.; DUARTE JR., E. P. Medidas de conectividade baseadas em cortes de vértices para redes complexas. In: XXIX Simpósio Brasileiro de Redes e Sistemas Distribuídos (SBRC 2011), September 2012. [36] COSTA, L. D. F.; A., F.; TRAVIESO, G.; BOAS, V. P. R. Characterization of complex networks: A survey of measurements. Advances in Physics, 56(1):167– 242, 2006. [37] DIESTEL, R. Graph theory. Springer, 2006. [38] DUFFY, K.; LEITH, D. J.; LI, T.; MALONE, D. Improving fairness in multi-hop mesh networks using 802.11e. In: Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, 2006 4th International Symposium on, p. 1–8, 2006. [39] ELIANOS, F. A.; PLAKIA, G.; FRANGOUDIS, P. A.; POLYZOS, G. C. Structure and evolution of a large-scale wireless community network. In: IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks & Workshops (WoWMoM), p. 1–6, 2009. [40] ERD˝O S, P.; RÉNYI, A. On the evolution of random graphs. In: Publication of the Mathematical Institute of the Hungarian Academy of Sciences, p. 17–61, 1960. [41] ERD˝O S, P.; RÉNYI, A. On the strength of connectedness of a random graph. Acta Mathematica Hungarica, 12:261–267, 1961. [42] ERD˝O S, P.; RÉNYI, A. On random graphs. Publicationes Mathematicae Debrecen, 6:290–297, 1959. [43] EULER, L. Solutio problematis ad geometriam situs pertinentis. Commentarii academiae scientiarum Petropolitanae, 8:128–140, 1741. [44] EVERETTA, M.; BORGATTI, S. P. Ego network betweenness. Social Network, 27:31–38, 2005. [45] FALOUTSOS, M.; FALOUTSOS, P.; FALOUTSOS, C. On power-law relationships of the internet topology. SIGCOMM Computer Communication Review, 29(4):251– 262, 1999. [46] FLORY, P. J. Molecular size distribution in three dimensional polymers. III. Tetrafunctional branching units. Journal of the American Chemical Society, 63(11):3096–3100, 1941. [47] FOUNDATION, W. L. Wireless Leiden. http://www.wirelessleiden.nl , June 2012. [48] FOUNDATION, W. L. About Wireless Leiden. http://www.wirelessleiden.nl/en/about-wireless-leiden , May 2013. [49] FOUNDATION, W. L. Localização dos nós na Wireless Leiden. http://www.wirelessleiden.nl/en/coverage-map , July 2013. [50] FRANGOUDIS, P. A.; POLYZOS, G. C.; KEMERLIS, V. P. Wireless community networks: an alternative approach for nomadic broadband network access. IEEE Communications Magazine, 2011. [51] FREEMAN, L. Centrality in social networks conceptual clarification. Social Networks, 1(3):215–239, 1979. [52] FRIEDRICH, J.; FROHN, S.; GUBNER, S.; LINDEMANN, C. Understanding IEEE 802.11n multi-hop communication in wireless networks. In: International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), p. 321–326, May 2011. [53] GE, Y.; THAM, C.-K.; KONG, P.-Y.; ANG, Y.-H. Dynamic end-to-end capacity in IEEE 802.16 wireless mesh networks. Computer Network, 54:2147–2165, 2010. [54] GILBERT, E. Random graphs. The Annals of Mathematical Statistics, 30(4):1141– 1144, 1959. [55] GUEDES, D.; SILVA, E.; CARDOSO, K. Uma métrica para classificação dinâmica de nós em redes sem fio comunitárias. In: XXX Simpósio Brasileiro de Telecomunicações (SBrT 2012), September 2012. [56] GUEDES, D.; SILVA, E.; ZIVIANI, A.; CARDOSO, K. Dynamic labeling in wireless mesh networks. In: 4th IEEE Latin-American Conference on Communications (LATINCOM 2012), November 2012. [57] GUEDES, D.; ZIVIANI, A.; CARDOSO, K. Dynamic labeling in wireless mesh networks. IEEE Latin America Transactions, 11(3):948–954, 2013. [58] HODGMAN, T. C. A historical perspective on gene/protein functional assignment. Bioinformatics, 16(1):10–15, 2000. [59] HUBBELL, C. H. An input-output approach to clique identification. Sociometry, 28(4):377–399, 1965. [60] HWANG, W.; KIM, T.; RAMANATHAN, M.; ZHANG, A. Bridging centrality: graph mining from element level to group level. In: ACM international conference on Knowledge discovery and data mining (SIGKDD), p. 336–344, 2008. [61] JAMAKOVI´C, A. Characterization of complex networks – Application to robustness analysis. PhD thesis, Delft University of Technology, the Netherlands, 2008. [62] JÄRVELIN, K.; KEKÄLÄINEN, J. Cumulated gain-based evaluation of ir techniques. ACM Transactions on Information and System Security(TISSEC), 20(4):422– 446, 2002. [63] KATZ, L. A new status index derived from sociometric analysis. Psychometrika, 18(1):39–43, 1953. [64] KEMPE, D.; KLEINBERG, J.; KUMAR, A. Connectivity and inference problems for temporal networks. Journal of Computer and System Sciences, 64(4):820–842, 2002. [65] KENDALL, M. G. A new measure of rank correlation. Biometrika, 30(1-2):81–93, 1938. [66] KLEINBERG, J. The small-world phenomenon: an algorithmic perspective. In: Proceedings of the thirty-second annual ACM symposium on Theory of computing, STOC ’00, p. 163–170, 2000. [67] KRAMER, R.; LOPEZ, A.; KOONEN, A. Municipal broadband access networks in the Netherlands - three successful cases, and how New Europe may benefit. In: International conference on Access networks (AcessNets), p. 1–8, September 2006. [68] MALCZEWSKI, J.; OGRYC˙ZAK, W. An interactive approach to the central facility location problem: locating pediatric hospitals in Warsaw. Geographical Analysis, 22(3):244–258, 1990. [69] MALONE, D.; DUFFY, K.; LEITH, D. Modeling the 802.11 distributed coordination function in nonsaturated heterogeneous conditions. IEEE/ACM Transactions on Networking, 15(1):159–172, 2007. [70] MEIRELLES, A. L. S. Estratégias para aumentar a acurácia do sensoriamento de espectro baseado em sensor de energia. Master’s thesis, Universidade Federal de Goiás, 2012. [71] MELUCCI, M. Weighted rank correlation in information retrieval evaluation. In: Information Retrieval Technology, volume 5839, p. 75–86. Springer Berlin / Heidelberg, 2009. [72] MENDES, G. A. Estudo de sistemas complexos com interações de longo alcance: percolação, redes e tráfego. PhD thesis, Universidade Federal do Rio Grande do Norte, 2010. [73] MILGRAM, S. The small world problem. Psychology Today, 2:60–67, 1967. [74] MOLLOY, M.; REED, B. A critical point for random graphs with a given degree sequence. Random Structures and Algorithms, 6(2-3):161–180, 1995. [75] MONTGOMERY, D. C.; RUNGER, G. C. Applied statistics and probability for engineers, 4th Edition, and JustAsk! Set. John Wiley & Sons, 4 edition, May 2006. [76] NANDA, S.; KOTZ, D. Localized bridging centrality for distributed network analysis. In: International Conference on Computer Communications and Networks (ICCCN), p. 1–6, August 2008. [77] NANDA, S.; KOTZ, D. Social network analysis plugin (SNAP) for mesh networks. In: IEEE Wireless Communications and Networking Conference (WCNC), p. 725– 730, March 2011. [78] NETWORK SIMULATOR 3. Artigos validados no ns-3. http://www.nsnam.org/overview/publications/ , July 2013. [79] NETWORK SIMULATOR 3. Documentação do ns-3. http://www.nsnam.org/doxygen-release/index.html , July 2013. [80] NETWORK SIMULATOR 3. ns-3. http://www.nsnam.org/ , July 2013. [81] NEWMAN, M. E. J. The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences of the United States of America, 98(2):404–409, 2001. [82] NEWMAN, M. E. J. The structure and function of complex networks. SIAM REVIEW, 45:167–256, 2003. [83] NEWMAN, M. E. J.; GIRVAN, M. Finding and evaluating community structure in networks. Physical Review E, 69(2), 2003. [84] NEWMAN, M. E. J. A measure of betweenness centrality based on random walks. Social Networks, 27(1):39–54, 2005. [85] Newman, M. E. J.; Barabási, A. L.; Watts, D. J., editors. The structure and dynamics of networks. Princeton University Press, 2006. [86] NEWMAN, M.; WATTS, D. Scaling and percolation in the small-world network model. Phys. Rev. E, 60(6):7332–7342, 1999. [87] PALUMBO, M. C.; COLOSIMO, A.; GIULIANI, A.; FARINA, L. Functional essentiality from topology features in metabolic networks: a case study in yeast. FEBS Lett, 579(21):4642–4646, 2005. [88] PASTOR-SATORRAS, R.; VESPIGNANI, A. Evolution and structure of the Internet: a statistical physics approach. Cambridge University Press, 2004. [89] PINHEIRO, L.; SILVA, E. As redes cognitivas na ciência da informação brasileira: um estudo nos artigos científicos publicados nos periódicos da área. Ciência da Informação, 37(3), 2008. [90] RAPOPORT, A. Nets with distance bias. Bulletin of Mathematical Biophysics, 13:85–91, 1951. [91] RAPOPORT, A. Spread of information through a population with sociostructural bias: I. Assumption of transitivity. Bulletin of Mathematical Biology, 15(4):523–533, 1953. [92] RAPOPORT, A. Contribution to the theory of random and biased nets. Bulletin of Mathematical Biology, 19(4):257–277, December 1957. [93] REKA, A.; BARABÁSI. Statistical mechanics of complex networks. Reviews of Modern Physics, 74:47–97, 2002. [94] ROBINSON, J.; RANDHAWA, T. Saturation throughput analysis of ieee 802.11e enhanced distributed coordination function. Selected Areas in Communications, IEEE Journal on, 22(5):917–928, 2004. [95] SHIMBEL, A. Structural parameters of communication networks. Bulletin of Mathematical Biology, 15(4):501–507, 1953. [96] SHMOYS, D. B.; TARDOS, E.; AARDAL, K. Approximation algorithms for facility location problems (extended abstract). In: Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, STOC ’97, p. 265–274, 1997. [97] SOLOMONOFF, R.; RAPOPORT, A. Connectivity of random nets. Bulletin of Mathematical Biology, 13(2):107–117, 1951. [98] TOREGAS, C.; SWAIN, R.; REVELLE, C.; BERGMAN, L. The location of emergency service facilities. Operations Research, 19:1363–1373, 1971. [99] VAN DRUNEN, R.; VAN GULIK, D.-W.; KOOLHAAS, J.; SCHUURMANS, H.; VIJN, M. Building a wireless community network in the netherlands. In: USENIX/Freenix Conference, p. 219–230, 2003. [100] WASSERMAN, S.; FAUST, K. Social network analysis: methods and applications. Cambridge University Press, 1994. [101] WATTS, D. J.; STROGATZ, S. H. Collective dynamics of small-world networks. Nature, 393(6684):409–10, 1998. [102] WATTS, D. J. Small worlds: The dynamics of networks between order and randomness. Princeton University Press, 1999. [103] WATTS, D. J. Six degrees: the science of a connected age (open market edition). W. W. Norton & Company, reprint edition, 2004. [104] WAXMAN, B. Routing of multipoint connections. IEEE Journal on Selected Areas in Communications, 6(1-2):1617 – 1622, 1988. [105] WEHMUTH, K.; ZIVIANI, A. Um novo algoritmo distribuído para avaliação e localização de centralidade de rede. In: Workshop em Desempenho de Sistemas Computacionais e de Comunicação (WPerformance), July 2011. [106] XUAN, B. B.; FERREIRA, A.; JARRY, A. Computing shortest, fastest, and foremost journeys in dynamic networks. International Journal of Foundations of Computer Science, 14(2):267–285, 2003. [107] YOU, L.; DONG, C.; CHEN, G.; DAI, Y.; ZHOU, W. Fhmesh: a flexible heterogeneous mesh networking platform. In: Sixth International Conference on Mobile Ad-hoc and Sensor Networks (MSN), 2010.-3303550325223384799600600600600-771226673463364476836717112058112045092075167498588264571http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessCiência das RedesRedes Complexas DinâmicasMétricas de CentralidadeRedes em Malha Sem FioNetwork ScienceDynamic Complex NetworksCentrality MetricsWireless Mesh NetworksCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOClassificação dinâmica de nós em redes em malha sem fioinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisPrograma de Pós-graduação em Ciência da Computação (INF)UFGBrasilInstituto de Informática - INF (RG)reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/19c5fbe0-8411-4f01-8797-cc0c2e378380/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/edfa44d7-8723-4b35-a267-ee00171eb4bc/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-822117http://repositorio.bc.ufg.br/tede/bitstreams/1f4f83e5-8f94-4366-ab33-f2680ff93c4a/downloaddd6580d2d5007383f0e67b904850adc9MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://repositorio.bc.ufg.br/tede/bitstreams/a6315c51-4cd4-4158-809c-afee58f45179/download9da0b6dfac957114c6a7714714b86306MD54ORIGINALDissertacao Diego Americo Guedes.pdfDissertacao Diego Americo Guedes.pdfapplication/pdf971567http://repositorio.bc.ufg.br/tede/bitstreams/34bc0b48-4e7c-4b96-ba71-2485efea7236/downloada39a61e190ff600e318da0dd24eb108cMD55TEXTDissertacao Diego Americo Guedes.pdf.txtDissertacao Diego Americo Guedes.pdf.txtExtracted Texttext/plain174385http://repositorio.bc.ufg.br/tede/bitstreams/098df771-b347-4dc5-bd50-b744a752f334/downloada0aaed604de36f2aa95be94e113f5453MD56THUMBNAILDissertacao Diego Americo Guedes.pdf.jpgDissertacao Diego Americo Guedes.pdf.jpgGenerated Thumbnailimage/jpeg3116http://repositorio.bc.ufg.br/tede/bitstreams/f1a3ef73-04f0-4649-bbb5-43df680afa59/downloadf12f82b716167e28cd4984baf5a632cdMD57tede/30492014-09-12 03:01:44.473http://creativecommons.org/licenses/by-nc-nd/4.0/open.accessoai:repositorio.bc.ufg.br:tede/3049http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2014-09-12T06:01:44Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.por.fl_str_mv Classificação dinâmica de nós em redes em malha sem fio
title Classificação dinâmica de nós em redes em malha sem fio
spellingShingle Classificação dinâmica de nós em redes em malha sem fio
Guedes, Diego Américo
Ciência das Redes
Redes Complexas Dinâmicas
Métricas de Centralidade
Redes em Malha Sem Fio
Network Science
Dynamic Complex Networks
Centrality Metrics
Wireless Mesh Networks
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Classificação dinâmica de nós em redes em malha sem fio
title_full Classificação dinâmica de nós em redes em malha sem fio
title_fullStr Classificação dinâmica de nós em redes em malha sem fio
title_full_unstemmed Classificação dinâmica de nós em redes em malha sem fio
title_sort Classificação dinâmica de nós em redes em malha sem fio
author Guedes, Diego Américo
author_facet Guedes, Diego Américo
author_role author
dc.contributor.advisor1.fl_str_mv Cardoso, Kleber Vieira
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0268732896111424
dc.contributor.advisor-co1.fl_str_mv Ziviani, Artur
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/0472856771871140
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/1455013887760441
dc.contributor.author.fl_str_mv Guedes, Diego Américo
contributor_str_mv Cardoso, Kleber Vieira
Ziviani, Artur
dc.subject.por.fl_str_mv Ciência das Redes
Redes Complexas Dinâmicas
Métricas de Centralidade
Redes em Malha Sem Fio
topic Ciência das Redes
Redes Complexas Dinâmicas
Métricas de Centralidade
Redes em Malha Sem Fio
Network Science
Dynamic Complex Networks
Centrality Metrics
Wireless Mesh Networks
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.eng.fl_str_mv Network Science
Dynamic Complex Networks
Centrality Metrics
Wireless Mesh Networks
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description In this work we present and evaluate a modeling methodology that describes the creation of a topology for wireless mesh networks, and how this topology changes over time. The modeling methodology is based on network science, which is a multidisciplinary research area that has a lot of tools to help in the study and analysis of networks. In wireless mesh networks, the relative importance of the nodes is often related to the topological aspects, and data flow. However, due to the dynamics of the network, the relative importance of the nodes may vary in time. In the context of network science, the concept of centrality metric represents the relative importance of a node in the network. In this work we show also that the current centrality metrics are not able to rank properly the nodes in wireless mesh networks. Then we propose a new metric of centrality that ranks the most important nodes in a wireless mesh network over time. We evaluate our proposal using data from a case study of the proposed modeling methodology and also from real wireless mesh networks, achieving satisfactory performance. The characteristics of our metric make it a useful tool for monitoring dynamic networks.
publishDate 2014
dc.date.accessioned.fl_str_mv 2014-09-11T11:50:01Z
dc.date.issued.fl_str_mv 2014-09-11
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/3049
url http://repositorio.bc.ufg.br/tede/handle/tede/3049
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -3303550325223384799
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -7712266734633644768
dc.relation.cnpq.fl_str_mv 3671711205811204509
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.relation.references.por.fl_str_mv [1] Localização dos nós na Athens Wireless Metropolitan Network. http://wind.awmn.net/?page=gmap , July 2013. [2] Localização dos nós na Seattle Wireless. http://map.seattlewireless.net , July 2013. [3] AGUAYO, D.; BICKET, J.; BISWAS, S.; JUDD, G.; MORRIS, R. Link-level measurements from an 802.11b mesh network. SIGCOMM Computer Communication Review, 34(4):121–132, August 2004. [4] AIELLO, W.; CHUNG, F.; LU, L. A random graph model for massive graphs. In: Proceedings of the thirty-second annual ACM symposium on Theory of computing, STOC ’00, p. 171–180, 2000. [5] AIELLO, W.; CHUNG, F.; LU, L. Handbook of massive data sets. chapter Random evolution in massive graphs, p. 97–122. Kluwer Academic Publishers, 2002. [6] AKYILDIZ, I. F.; WANG, X.; WANG, W. Wireless mesh networks: a survey. Comput. Netw. ISDN Syst., 47(4):445–487, 2005. [7] ALBERT, R.; JEONG, H.; BARABASI, A. L. The diameter of the world wide web. Nature, 401:130–131, 1999. [8] ALMIRON, M. G.; RAMOS, H. S.; OLIVEIRA, E. M.; AO G. M. DE MENEZES, J.; GUIDONI, D. L.; STANCIOLI, P. O.; DA CUNHA, F. D.; DE AQUINO, A. L. L.; MINI, R. A. F.; FRERY, A. C.; LOUREIRO, A. A. F. Redes complexas na modelagem de redes de computadores. Minicurso SBRC, 2010. [9] AMARAL, L. A.; OTTINO, J. M. Complex networks. The European Physical Journal B-Condensed Matter and Complex Systems, 38(2):147–162, 2004. [10] ANTIQUEIRA, L.; NUNES, M. G. V.; JÚNIOR, O. N. O.; COSTA, L. F. Complex networks in the assessment of quality text. In Physics, 2005. [11] BARABÁSI, A.-L.; ALBERT, R. Emergence of scaling in random networks. Science, 286(5439):509–512, 1999. [12] BARABÁSI, A.-L.; ALBERT, R.; JEONG, H. Scale-free characteristics of random networks: the topology of the world-wide web. Physica A: Statistical Mechanics and its Applications, 281(1-4):69–77, 2000. [13] BARABASI, A.-L.; OLTVAI, Z. N. Network biology: understanding the cell’s functional organization. Nature Reviews Genetics, 5(2):101–113, 2004. [14] BENDER, E. A.; CANFIELD, E. R. The asymptotic number of labeled graphs with given degree sequences. Journal of Combinatorial Theory, Series A, 24(3):296– 307, May 1978. [15] BERMAN, K. A. Vulnerability of scheduled networks and a generalization of Menger’s Theorem. Networks, 28(3):125–134, 1996. [16] BHADRA, S.; FERREIRA, A. Complexity of connected components in evolving graphs and the computation of multicast trees in dynamic networks. In: Proc. 2nd Intl. Conference on Ad Hoc Networks and Wirelsss (AdHoc-Now), p. 259–270, 2003. [17] BIANCHI, G. Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3):535–547, 2000. [18] BICKET, J.; AGUAYO, D.; BISWAS, S.; MORRIS, R. Architecture and evaluation of an unplanned 802.11b mesh network. In: International conference on Mobile computing and networking, p. 31–42, 2005. [19] BICKET, J. C. Bit-rate selection in wireless networks. Master’s thesis, Master of Science in Computer Science and Engineering at the Massachusetts Institute of Technology, 2005. [20] BISWAS, S.; MORRIS, R. Opportunistic routing in multi-hop wireless networks. SIGCOMM Computer Communication Review, 34(1):69–74, 2004. [21] BONACICH, P. Factoring and weighting approaches to status scores and clique identification. Journal of Mathematical Sociology, 2(1):113–120, 1972. [22] BONACICH, P. Power and centrality: a family of measures. American Journal of Sociology, 92(5):1170–1182, 1987. [23] BONACICH, P.; LLOYD, P. Eigenvector-like measures of centrality for asymmetric relations. Social Networks, 23(3):191–201, 2001. [24] BONDY, J. A.; MURTY, U. S. R. Graph theory. Springer, 2008. [25] BORGATTI, S. P. Centrality and network flow. Social Networks, 27(1):55–71, 2005. [26] BÖRNER, K.; SANYAL, S.; VESPIGNANI, A. Network science. Annual Review of Information Science and Technology, 41(1):537–607, 2007. [27] Bornholdt, S.; Schuster, H. G., editors. Handbook of graphs and networks: from the genome to the Internet. John Wiley & Sons, Inc., 2003. [28] BRANDES, U.; FLEISCHER, D. Centrality measures based on current flow. In: Conference on Theoretical Aspects of Computer Science (STACS), p. 533–544. Springer-Verlag, 2005. [29] BRIN, S.; PAGE, L. The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems, 30(1-7):107–117, 1998. [30] CALDEIRA, S. M. G. Lendo Bohr ao pé da letra: análise de elementos conceituais em escritos de Niels Bohr. Master’s thesis, Universidade Federal da Bahia, 2007. [31] Carrington, P. J.; Scott, J.; Wasserman, S., editors. Models and methods in social network analysis. Cambridge University Press, 2005. [32] CASTEIGTS, A.; FLOCCHINI, P.; QUATTROCIOCCHI, W.; SANTORO, N. Timevarying graphs and dynamic networks. International Journal of Parallel, Emergent and Distributed Systems, 2012. [33] CHAINTREAU, A.; MTIBAA, A.; MASSOULIE, L.; DIOT, C. The diameter of opportunistic mobile networks. In: Proceedings of the 2007 ACM CoNEXT conference, CoNEXT ’07, p. 1–12, 2007. [34] CHEN, Q.; HYUNSEOK, Q. C.; GOVINDAN, R.; JAMIN, S.; SHENKER, S. J.; WILLINGER, W. The origin of power laws in internet topologies revisited. In: In IEEE INFOCOM 2002, p. 608–617, 2002. [35] COHEN, J.; PIRES, K.; DUARTE JR., E. P. Medidas de conectividade baseadas em cortes de vértices para redes complexas. In: XXIX Simpósio Brasileiro de Redes e Sistemas Distribuídos (SBRC 2011), September 2012. [36] COSTA, L. D. F.; A., F.; TRAVIESO, G.; BOAS, V. P. R. Characterization of complex networks: A survey of measurements. Advances in Physics, 56(1):167– 242, 2006. [37] DIESTEL, R. Graph theory. Springer, 2006. [38] DUFFY, K.; LEITH, D. J.; LI, T.; MALONE, D. Improving fairness in multi-hop mesh networks using 802.11e. In: Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, 2006 4th International Symposium on, p. 1–8, 2006. [39] ELIANOS, F. A.; PLAKIA, G.; FRANGOUDIS, P. A.; POLYZOS, G. C. Structure and evolution of a large-scale wireless community network. In: IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks & Workshops (WoWMoM), p. 1–6, 2009. [40] ERD˝O S, P.; RÉNYI, A. On the evolution of random graphs. In: Publication of the Mathematical Institute of the Hungarian Academy of Sciences, p. 17–61, 1960. [41] ERD˝O S, P.; RÉNYI, A. On the strength of connectedness of a random graph. Acta Mathematica Hungarica, 12:261–267, 1961. [42] ERD˝O S, P.; RÉNYI, A. On random graphs. Publicationes Mathematicae Debrecen, 6:290–297, 1959. [43] EULER, L. Solutio problematis ad geometriam situs pertinentis. Commentarii academiae scientiarum Petropolitanae, 8:128–140, 1741. [44] EVERETTA, M.; BORGATTI, S. P. Ego network betweenness. Social Network, 27:31–38, 2005. [45] FALOUTSOS, M.; FALOUTSOS, P.; FALOUTSOS, C. On power-law relationships of the internet topology. SIGCOMM Computer Communication Review, 29(4):251– 262, 1999. [46] FLORY, P. J. Molecular size distribution in three dimensional polymers. III. Tetrafunctional branching units. Journal of the American Chemical Society, 63(11):3096–3100, 1941. [47] FOUNDATION, W. L. Wireless Leiden. http://www.wirelessleiden.nl , June 2012. [48] FOUNDATION, W. L. About Wireless Leiden. http://www.wirelessleiden.nl/en/about-wireless-leiden , May 2013. [49] FOUNDATION, W. L. Localização dos nós na Wireless Leiden. http://www.wirelessleiden.nl/en/coverage-map , July 2013. [50] FRANGOUDIS, P. A.; POLYZOS, G. C.; KEMERLIS, V. P. Wireless community networks: an alternative approach for nomadic broadband network access. IEEE Communications Magazine, 2011. [51] FREEMAN, L. Centrality in social networks conceptual clarification. Social Networks, 1(3):215–239, 1979. [52] FRIEDRICH, J.; FROHN, S.; GUBNER, S.; LINDEMANN, C. Understanding IEEE 802.11n multi-hop communication in wireless networks. In: International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), p. 321–326, May 2011. [53] GE, Y.; THAM, C.-K.; KONG, P.-Y.; ANG, Y.-H. Dynamic end-to-end capacity in IEEE 802.16 wireless mesh networks. Computer Network, 54:2147–2165, 2010. [54] GILBERT, E. Random graphs. The Annals of Mathematical Statistics, 30(4):1141– 1144, 1959. [55] GUEDES, D.; SILVA, E.; CARDOSO, K. Uma métrica para classificação dinâmica de nós em redes sem fio comunitárias. In: XXX Simpósio Brasileiro de Telecomunicações (SBrT 2012), September 2012. [56] GUEDES, D.; SILVA, E.; ZIVIANI, A.; CARDOSO, K. Dynamic labeling in wireless mesh networks. In: 4th IEEE Latin-American Conference on Communications (LATINCOM 2012), November 2012. [57] GUEDES, D.; ZIVIANI, A.; CARDOSO, K. Dynamic labeling in wireless mesh networks. IEEE Latin America Transactions, 11(3):948–954, 2013. [58] HODGMAN, T. C. A historical perspective on gene/protein functional assignment. Bioinformatics, 16(1):10–15, 2000. [59] HUBBELL, C. H. An input-output approach to clique identification. Sociometry, 28(4):377–399, 1965. [60] HWANG, W.; KIM, T.; RAMANATHAN, M.; ZHANG, A. Bridging centrality: graph mining from element level to group level. In: ACM international conference on Knowledge discovery and data mining (SIGKDD), p. 336–344, 2008. [61] JAMAKOVI´C, A. Characterization of complex networks – Application to robustness analysis. PhD thesis, Delft University of Technology, the Netherlands, 2008. [62] JÄRVELIN, K.; KEKÄLÄINEN, J. Cumulated gain-based evaluation of ir techniques. ACM Transactions on Information and System Security(TISSEC), 20(4):422– 446, 2002. [63] KATZ, L. A new status index derived from sociometric analysis. Psychometrika, 18(1):39–43, 1953. [64] KEMPE, D.; KLEINBERG, J.; KUMAR, A. Connectivity and inference problems for temporal networks. Journal of Computer and System Sciences, 64(4):820–842, 2002. [65] KENDALL, M. G. A new measure of rank correlation. Biometrika, 30(1-2):81–93, 1938. [66] KLEINBERG, J. The small-world phenomenon: an algorithmic perspective. In: Proceedings of the thirty-second annual ACM symposium on Theory of computing, STOC ’00, p. 163–170, 2000. [67] KRAMER, R.; LOPEZ, A.; KOONEN, A. Municipal broadband access networks in the Netherlands - three successful cases, and how New Europe may benefit. In: International conference on Access networks (AcessNets), p. 1–8, September 2006. [68] MALCZEWSKI, J.; OGRYC˙ZAK, W. An interactive approach to the central facility location problem: locating pediatric hospitals in Warsaw. Geographical Analysis, 22(3):244–258, 1990. [69] MALONE, D.; DUFFY, K.; LEITH, D. Modeling the 802.11 distributed coordination function in nonsaturated heterogeneous conditions. IEEE/ACM Transactions on Networking, 15(1):159–172, 2007. [70] MEIRELLES, A. L. S. Estratégias para aumentar a acurácia do sensoriamento de espectro baseado em sensor de energia. Master’s thesis, Universidade Federal de Goiás, 2012. [71] MELUCCI, M. Weighted rank correlation in information retrieval evaluation. In: Information Retrieval Technology, volume 5839, p. 75–86. Springer Berlin / Heidelberg, 2009. [72] MENDES, G. A. Estudo de sistemas complexos com interações de longo alcance: percolação, redes e tráfego. PhD thesis, Universidade Federal do Rio Grande do Norte, 2010. [73] MILGRAM, S. The small world problem. Psychology Today, 2:60–67, 1967. [74] MOLLOY, M.; REED, B. A critical point for random graphs with a given degree sequence. Random Structures and Algorithms, 6(2-3):161–180, 1995. [75] MONTGOMERY, D. C.; RUNGER, G. C. Applied statistics and probability for engineers, 4th Edition, and JustAsk! Set. John Wiley & Sons, 4 edition, May 2006. [76] NANDA, S.; KOTZ, D. Localized bridging centrality for distributed network analysis. In: International Conference on Computer Communications and Networks (ICCCN), p. 1–6, August 2008. [77] NANDA, S.; KOTZ, D. Social network analysis plugin (SNAP) for mesh networks. In: IEEE Wireless Communications and Networking Conference (WCNC), p. 725– 730, March 2011. [78] NETWORK SIMULATOR 3. Artigos validados no ns-3. http://www.nsnam.org/overview/publications/ , July 2013. [79] NETWORK SIMULATOR 3. Documentação do ns-3. http://www.nsnam.org/doxygen-release/index.html , July 2013. [80] NETWORK SIMULATOR 3. ns-3. http://www.nsnam.org/ , July 2013. [81] NEWMAN, M. E. J. The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences of the United States of America, 98(2):404–409, 2001. [82] NEWMAN, M. E. J. The structure and function of complex networks. SIAM REVIEW, 45:167–256, 2003. [83] NEWMAN, M. E. J.; GIRVAN, M. Finding and evaluating community structure in networks. Physical Review E, 69(2), 2003. [84] NEWMAN, M. E. J. A measure of betweenness centrality based on random walks. Social Networks, 27(1):39–54, 2005. [85] Newman, M. E. J.; Barabási, A. L.; Watts, D. J., editors. The structure and dynamics of networks. Princeton University Press, 2006. [86] NEWMAN, M.; WATTS, D. Scaling and percolation in the small-world network model. Phys. Rev. E, 60(6):7332–7342, 1999. [87] PALUMBO, M. C.; COLOSIMO, A.; GIULIANI, A.; FARINA, L. Functional essentiality from topology features in metabolic networks: a case study in yeast. FEBS Lett, 579(21):4642–4646, 2005. [88] PASTOR-SATORRAS, R.; VESPIGNANI, A. Evolution and structure of the Internet: a statistical physics approach. Cambridge University Press, 2004. [89] PINHEIRO, L.; SILVA, E. As redes cognitivas na ciência da informação brasileira: um estudo nos artigos científicos publicados nos periódicos da área. Ciência da Informação, 37(3), 2008. [90] RAPOPORT, A. Nets with distance bias. Bulletin of Mathematical Biophysics, 13:85–91, 1951. [91] RAPOPORT, A. Spread of information through a population with sociostructural bias: I. Assumption of transitivity. Bulletin of Mathematical Biology, 15(4):523–533, 1953. [92] RAPOPORT, A. Contribution to the theory of random and biased nets. Bulletin of Mathematical Biology, 19(4):257–277, December 1957. [93] REKA, A.; BARABÁSI. Statistical mechanics of complex networks. Reviews of Modern Physics, 74:47–97, 2002. [94] ROBINSON, J.; RANDHAWA, T. Saturation throughput analysis of ieee 802.11e enhanced distributed coordination function. Selected Areas in Communications, IEEE Journal on, 22(5):917–928, 2004. [95] SHIMBEL, A. Structural parameters of communication networks. Bulletin of Mathematical Biology, 15(4):501–507, 1953. [96] SHMOYS, D. B.; TARDOS, E.; AARDAL, K. Approximation algorithms for facility location problems (extended abstract). In: Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, STOC ’97, p. 265–274, 1997. [97] SOLOMONOFF, R.; RAPOPORT, A. Connectivity of random nets. Bulletin of Mathematical Biology, 13(2):107–117, 1951. [98] TOREGAS, C.; SWAIN, R.; REVELLE, C.; BERGMAN, L. The location of emergency service facilities. Operations Research, 19:1363–1373, 1971. [99] VAN DRUNEN, R.; VAN GULIK, D.-W.; KOOLHAAS, J.; SCHUURMANS, H.; VIJN, M. Building a wireless community network in the netherlands. In: USENIX/Freenix Conference, p. 219–230, 2003. [100] WASSERMAN, S.; FAUST, K. Social network analysis: methods and applications. Cambridge University Press, 1994. [101] WATTS, D. J.; STROGATZ, S. H. Collective dynamics of small-world networks. Nature, 393(6684):409–10, 1998. [102] WATTS, D. J. Small worlds: The dynamics of networks between order and randomness. Princeton University Press, 1999. [103] WATTS, D. J. Six degrees: the science of a connected age (open market edition). W. W. Norton & Company, reprint edition, 2004. [104] WAXMAN, B. Routing of multipoint connections. IEEE Journal on Selected Areas in Communications, 6(1-2):1617 – 1622, 1988. [105] WEHMUTH, K.; ZIVIANI, A. Um novo algoritmo distribuído para avaliação e localização de centralidade de rede. In: Workshop em Desempenho de Sistemas Computacionais e de Comunicação (WPerformance), July 2011. [106] XUAN, B. B.; FERREIRA, A.; JARRY, A. Computing shortest, fastest, and foremost journeys in dynamic networks. International Journal of Foundations of Computer Science, 14(2):267–285, 2003. [107] YOU, L.; DONG, C.; CHEN, G.; DAI, Y.; ZHOU, W. Fhmesh: a flexible heterogeneous mesh networking platform. In: Sixth International Conference on Mobile Ad-hoc and Sensor Networks (MSN), 2010.
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Ciência da Computação (INF)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Informática - INF (RG)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/19c5fbe0-8411-4f01-8797-cc0c2e378380/download
http://repositorio.bc.ufg.br/tede/bitstreams/edfa44d7-8723-4b35-a267-ee00171eb4bc/download
http://repositorio.bc.ufg.br/tede/bitstreams/1f4f83e5-8f94-4366-ab33-f2680ff93c4a/download
http://repositorio.bc.ufg.br/tede/bitstreams/a6315c51-4cd4-4158-809c-afee58f45179/download
http://repositorio.bc.ufg.br/tede/bitstreams/34bc0b48-4e7c-4b96-ba71-2485efea7236/download
http://repositorio.bc.ufg.br/tede/bitstreams/098df771-b347-4dc5-bd50-b744a752f334/download
http://repositorio.bc.ufg.br/tede/bitstreams/f1a3ef73-04f0-4649-bbb5-43df680afa59/download
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
dd6580d2d5007383f0e67b904850adc9
9da0b6dfac957114c6a7714714b86306
a39a61e190ff600e318da0dd24eb108c
a0aaed604de36f2aa95be94e113f5453
f12f82b716167e28cd4984baf5a632cd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1798045030475104256