Métodos de regularização cúbica com aproximações preguiçosas da hessiana
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | , , , |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| dARK ID: | ark:/38995/001300000g5d4 |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de Goiás
|
| Programa de Pós-Graduação: |
Programa de Pós-graduação em Matemática (IME)
|
| Departamento: |
Instituto de Matemática e Estatística - IME (RMG)
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | http://repositorio.bc.ufg.br/tede/handle/tede/14032 |
Resumo: | In this work, we present variants of the Cubic Regularization Newton's (CRN) method incorporating lazy Hessian approximations for solving general non-convex optimization problems (0-3). We propose two approaches: the first (Algorithm 1) employs the exact gradient while reusing the same Hessian approximation for a block of \( m \) iterations, whereas the second (Algorithm 2) extends this idea by additionally allowing the use of inexact gradients. Implementations of methods, where information about derivatives are computed through finite difference strategies, are presented. One interesting feature of our algorithms is that the regularization parameter and the accuracy of the derivative approximations (when they are updated) are jointly adjusted using a nonmonotone line search criterion. We establish first-order complexity results for both methods. Specifically, for a given precision $\epsilon$, it is shown that the Algorithm~1 and Algorithm~2 require at most {$\mathcal{O}\left( m^{1/2} \epsilon^{-3/2}\right)$} outer iterations to generate an $\epsilon-$approximate critical point for aforementioned problem. When the derivatives are computed by finite difference approaches, we show that Algorithm~1 (resp. Algorithm~2) needs at most {$\mathcal{O}\left((n+m)m^{-1/2}\epsilon^{-3/2}+(n+m)\right)$} (resp. {$\mathcal{O}\left((n^2+mn)m^{-1/2}\epsilon^{-3/2}+(n^2+mn)\right)$}) gradient and function (resp. function) evaluations to generate an $\epsilon$-approximate critical point, where $n$ is the dimension of the domain of the objective function. |
| id |
UFG-2_b52270d08c94b8a82b0ab1cd5d03f3a1 |
|---|---|
| oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/14032 |
| network_acronym_str |
UFG-2 |
| network_name_str |
Repositório Institucional da UFG |
| repository_id_str |
|
| spelling |
Gonçalves, Max Leandro Nobrehttp://lattes.cnpq.br/7841103869154032Gonçalves, Max Leandro NobreMelo, Jefferson Divino Gonçalves deGrapiglia, Geovani NunesSantos, Luiz Rafael doshttp://lattes.cnpq.br/4636474390589112Gehlen Filho, Vilmar2025-04-04T19:58:26Z2025-04-04T19:58:26Z2025-02-25GEHLEN FILHO, V. Métodos de regularização cúbica com aproximações preguiçosas da hessiana. 2025. 67 f. Dissertação (Mestrado em Matemática) - Instituto de Matemática e Estatística, Universidade Federal de Goiás, Goiânia, 2025.http://repositorio.bc.ufg.br/tede/handle/tede/14032ark:/38995/001300000g5d4In this work, we present variants of the Cubic Regularization Newton's (CRN) method incorporating lazy Hessian approximations for solving general non-convex optimization problems (0-3). We propose two approaches: the first (Algorithm 1) employs the exact gradient while reusing the same Hessian approximation for a block of \( m \) iterations, whereas the second (Algorithm 2) extends this idea by additionally allowing the use of inexact gradients. Implementations of methods, where information about derivatives are computed through finite difference strategies, are presented. One interesting feature of our algorithms is that the regularization parameter and the accuracy of the derivative approximations (when they are updated) are jointly adjusted using a nonmonotone line search criterion. We establish first-order complexity results for both methods. Specifically, for a given precision $\epsilon$, it is shown that the Algorithm~1 and Algorithm~2 require at most {$\mathcal{O}\left( m^{1/2} \epsilon^{-3/2}\right)$} outer iterations to generate an $\epsilon-$approximate critical point for aforementioned problem. When the derivatives are computed by finite difference approaches, we show that Algorithm~1 (resp. Algorithm~2) needs at most {$\mathcal{O}\left((n+m)m^{-1/2}\epsilon^{-3/2}+(n+m)\right)$} (resp. {$\mathcal{O}\left((n^2+mn)m^{-1/2}\epsilon^{-3/2}+(n^2+mn)\right)$}) gradient and function (resp. function) evaluations to generate an $\epsilon$-approximate critical point, where $n$ is the dimension of the domain of the objective function.Neste trabalho, apresentamos implementações de uma variante da Regularização Cúbica de Newton, incorporando aproximações preguiçosas da Hessiana para resolver problemas gerais de otimização não convexa (0-3). Nós propomos dois métodos: o primeiro (Algoritmo 1) utiliza de gradiente exato enquanto reutiliza a mesma aproximação da Hessiana para um bloco de $m$ iterações, por outro lado, o segundo (Algoritmo 2) estende essa ideia permitindo o uso de gradientes inexatos. Implementações de métodos, em que a informação sobre as derivadas são computadas por diferenças finitas são apresentadas. Um recurso interessante empregado pelos algoritmos é que ambos os parâmetros de regularização e a precisão das aproximações das derivadas (quando são atualizadas) são ajustadas usando um critério de busca linear não monótona. Estabelecemos complexidades de primeira ordem para ambos os métodos. Especificamente, dado uma precisão $\epsilon>0$, é mostrado que o Algoritmo~1 e o Algoritmo~2 requerem no máximo {$\mathcal{O}\left( m^{1/2} \epsilon^{-3/2}\right)$} iterações externas para gerar um ponto crítico $\epsilon$-aproximado do problema em questão. Quando as derivadas são computadas com aproximações por diferenças finitas, mostramos que o Algoritmo~1 (resp. Algoritmo~2) precisam no máximo {$\mathcal{O}\left((n+m)m^{-1/2}\epsilon^{-3/2}+(n+m)\right)$} (resp. {$\mathcal{O}\left((n^2+mn)m^{-1/2}\epsilon^{-3/2}+(n^2+mn)\right)$}) avaliações do gradiente e função (resp. função) para gerar um ponto crítico $\epsilon$-aproximado, onde $n$ é a dimensão do domínio da função objetivo.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESengUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RMG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessMétodo de regularização cúbicaAnálise de complexidadeHessiana preguiçosaOtimização não-convexaCubic regularization methodComplexity analysisLazy hessianNon- convex optimizationCIENCIAS EXATAS E DA TERRA::MATEMATICAMétodos de regularização cúbica com aproximações preguiçosas da hessianaCubic regularization methods with lazy hessian approximationsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.bc.ufg.br/tede/bitstreams/372c6698-2a5c-4790-82d2-72e6d8a681b7/download8a4605be74aa9ea9d79846c1fba20a33MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.bc.ufg.br/tede/bitstreams/0d2a53bc-fc66-4d75-8573-809044b39ba3/download4460e5956bc1d1639be9ae6146a50347MD52ORIGINALDissertação - Vilmar Gehlen Filho - 2025.pdfDissertação - Vilmar Gehlen Filho - 2025.pdfapplication/pdf797295http://repositorio.bc.ufg.br/tede/bitstreams/feb81fb0-f683-4686-8cf4-c88c94d71636/downloadd499d69be764aef6b6620956ff129c77MD53tede/140322025-04-04 16:58:26.188http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/14032http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttps://repositorio.bc.ufg.br/tedeserver/oai/requestgrt.bc@ufg.bropendoar:oai:repositorio.bc.ufg.br:tede/12342025-04-04T19:58:26Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| dc.title.none.fl_str_mv |
Métodos de regularização cúbica com aproximações preguiçosas da hessiana |
| dc.title.alternative.eng.fl_str_mv |
Cubic regularization methods with lazy hessian approximations |
| title |
Métodos de regularização cúbica com aproximações preguiçosas da hessiana |
| spellingShingle |
Métodos de regularização cúbica com aproximações preguiçosas da hessiana Gehlen Filho, Vilmar Método de regularização cúbica Análise de complexidade Hessiana preguiçosa Otimização não-convexa Cubic regularization method Complexity analysis Lazy hessian Non- convex optimization CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| title_short |
Métodos de regularização cúbica com aproximações preguiçosas da hessiana |
| title_full |
Métodos de regularização cúbica com aproximações preguiçosas da hessiana |
| title_fullStr |
Métodos de regularização cúbica com aproximações preguiçosas da hessiana |
| title_full_unstemmed |
Métodos de regularização cúbica com aproximações preguiçosas da hessiana |
| title_sort |
Métodos de regularização cúbica com aproximações preguiçosas da hessiana |
| author |
Gehlen Filho, Vilmar |
| author_facet |
Gehlen Filho, Vilmar |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
Gonçalves, Max Leandro Nobre |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/7841103869154032 |
| dc.contributor.referee1.fl_str_mv |
Gonçalves, Max Leandro Nobre |
| dc.contributor.referee2.fl_str_mv |
Melo, Jefferson Divino Gonçalves de |
| dc.contributor.referee3.fl_str_mv |
Grapiglia, Geovani Nunes |
| dc.contributor.referee4.fl_str_mv |
Santos, Luiz Rafael dos |
| dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/4636474390589112 |
| dc.contributor.author.fl_str_mv |
Gehlen Filho, Vilmar |
| contributor_str_mv |
Gonçalves, Max Leandro Nobre Gonçalves, Max Leandro Nobre Melo, Jefferson Divino Gonçalves de Grapiglia, Geovani Nunes Santos, Luiz Rafael dos |
| dc.subject.por.fl_str_mv |
Método de regularização cúbica Análise de complexidade Hessiana preguiçosa Otimização não-convexa |
| topic |
Método de regularização cúbica Análise de complexidade Hessiana preguiçosa Otimização não-convexa Cubic regularization method Complexity analysis Lazy hessian Non- convex optimization CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| dc.subject.eng.fl_str_mv |
Cubic regularization method Complexity analysis Lazy hessian Non- convex optimization |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| description |
In this work, we present variants of the Cubic Regularization Newton's (CRN) method incorporating lazy Hessian approximations for solving general non-convex optimization problems (0-3). We propose two approaches: the first (Algorithm 1) employs the exact gradient while reusing the same Hessian approximation for a block of \( m \) iterations, whereas the second (Algorithm 2) extends this idea by additionally allowing the use of inexact gradients. Implementations of methods, where information about derivatives are computed through finite difference strategies, are presented. One interesting feature of our algorithms is that the regularization parameter and the accuracy of the derivative approximations (when they are updated) are jointly adjusted using a nonmonotone line search criterion. We establish first-order complexity results for both methods. Specifically, for a given precision $\epsilon$, it is shown that the Algorithm~1 and Algorithm~2 require at most {$\mathcal{O}\left( m^{1/2} \epsilon^{-3/2}\right)$} outer iterations to generate an $\epsilon-$approximate critical point for aforementioned problem. When the derivatives are computed by finite difference approaches, we show that Algorithm~1 (resp. Algorithm~2) needs at most {$\mathcal{O}\left((n+m)m^{-1/2}\epsilon^{-3/2}+(n+m)\right)$} (resp. {$\mathcal{O}\left((n^2+mn)m^{-1/2}\epsilon^{-3/2}+(n^2+mn)\right)$}) gradient and function (resp. function) evaluations to generate an $\epsilon$-approximate critical point, where $n$ is the dimension of the domain of the objective function. |
| publishDate |
2025 |
| dc.date.accessioned.fl_str_mv |
2025-04-04T19:58:26Z |
| dc.date.available.fl_str_mv |
2025-04-04T19:58:26Z |
| dc.date.issued.fl_str_mv |
2025-02-25 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
GEHLEN FILHO, V. Métodos de regularização cúbica com aproximações preguiçosas da hessiana. 2025. 67 f. Dissertação (Mestrado em Matemática) - Instituto de Matemática e Estatística, Universidade Federal de Goiás, Goiânia, 2025. |
| dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/14032 |
| dc.identifier.dark.fl_str_mv |
ark:/38995/001300000g5d4 |
| identifier_str_mv |
GEHLEN FILHO, V. Métodos de regularização cúbica com aproximações preguiçosas da hessiana. 2025. 67 f. Dissertação (Mestrado em Matemática) - Instituto de Matemática e Estatística, Universidade Federal de Goiás, Goiânia, 2025. ark:/38995/001300000g5d4 |
| url |
http://repositorio.bc.ufg.br/tede/handle/tede/14032 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
| dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Matemática (IME) |
| dc.publisher.initials.fl_str_mv |
UFG |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
Instituto de Matemática e Estatística - IME (RMG) |
| publisher.none.fl_str_mv |
Universidade Federal de Goiás |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
| instname_str |
Universidade Federal de Goiás (UFG) |
| instacron_str |
UFG |
| institution |
UFG |
| reponame_str |
Repositório Institucional da UFG |
| collection |
Repositório Institucional da UFG |
| bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/372c6698-2a5c-4790-82d2-72e6d8a681b7/download http://repositorio.bc.ufg.br/tede/bitstreams/0d2a53bc-fc66-4d75-8573-809044b39ba3/download http://repositorio.bc.ufg.br/tede/bitstreams/feb81fb0-f683-4686-8cf4-c88c94d71636/download |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 4460e5956bc1d1639be9ae6146a50347 d499d69be764aef6b6620956ff129c77 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
| repository.mail.fl_str_mv |
grt.bc@ufg.br |
| _version_ |
1846536621859536896 |