Variabilidade genética de progênies de feijão-comum do grupo preto do quarto ciclo de seleção recorrente para produtividade

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Alves, Eduardo Almeida lattes
Orientador(a): Melo, Patrícia Guimarães Santos lattes
Banca de defesa: Melo, Patrícia Guimarães Santos, Silva Filho, João Luis da, Coelho, Alexandre Siqueira Guedes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
dARK ID: ark:/38995/001300000zv1r
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Genética e Melhoramento de Plantas (EA)
Departamento: Escola de Agronomia - EA (RMG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/14263
Resumo: Grain yield remains the primary objective of plant breeding programs. Due to the quantitative and polygenic nature of this trait, recurrent selection methods are the most appropriate for achieving rapid and effective genetic gains, as they promote the continuous accumulation of favorable alleles. In common bean (Phaseolus vulgaris L.), successful cultivars consistently integrate high yield with commercial grain quality. The present study aimed to estimate genetic parameters and assess the genetic diversity of common bean progenies from the third cycle of recurrent selection for grain yield, within the black bean market class, to guide the composition of the subsequent selection and recombination cycle. To obtain experimental populations, 13 parental genotypes were utilized. In the initial generations, 500 progenies were evaluated at the S0:1, S0:2, and S0:3 stages, with 35 progenies selected for advancement to the S0:4 generation. The 35 S0:4 progenies, along with four control cultivars, were evaluated in field trials arranged in a randomized complete block design (RCBD) with three replications. The experimental plots consisted of three-row plots, each three meters in length, across five environments located in the states of Goiás and Paraná. The following agronomic traits were assessed: grain yield (GY) (kg ha⁻¹), 100-seed weight (100M) (g), sieve yield (SY) (%), lodging (LOD), and plant architecture (PAR). Additionally, disease resistance evaluations were conducted for Fusarium oxysporum (FOP) and anthracnose (AN). The genotypic characterization was performed using molecular data obtained from microsatellite (SSR) markers. Statistical analyses included analysis of variance, estimation of genetic parameters, and the calculation of genetic, phenotypic, and environmental correlations. The SSR marker data were used to estimate genetic divergence and population structure. For the selection of superior progenies, the Kennard-Stone algorithm and the Mulamba & Mock selection index were applied. The overall means for GY, 100M, and SY were 2846 kg ha⁻¹, 21.36 g, and 86.70%, respectively. Analysis of variance revealed a significant effect for genotypes, demonstrating genetic variability among progenies, as well as a significant genotype-by-environment interaction, indicating differential progeny responses across the tested environments. Heritability estimates were high for GY (67.97%) and 100M (90.67%) and intermediate for SY (74.29%). The expected genetic gain based on individual trait selection was 6.01% for GY, 3.47% for 100M, and 2.77% for SY. Molecular analysis revealed inconsistent clustering patterns and a lack of clear genetic structuring. Among the different selection strategies evaluated, the Mulamba & Mock index with economic weighting yielded the highest selection gains for GY (5.65%), 100M (1.29%), and SY (1.23%). Based on these results, ten superior progenies were selected for inclusion in the next recombination cycle. These progenies will be used to develop new elite lines and to generate the population for the subsequent cycle of recurrent selection.
id UFG-2_deceef46b5dffb1a3c6136324694114f
oai_identifier_str oai:repositorio.bc.ufg.br:tede/14263
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Melo, Patrícia Guimarães Santoshttp://lattes.cnpq.br/1508679345970114Melo, Leonardo Cunhahttp://lattes.cnpq.br/9132553601896172Pereira, Helton Santoshttp://lattes.cnpq.br/0729719587905292Melo, Patrícia Guimarães SantosSilva Filho, João Luis daCoelho, Alexandre Siqueira Guedeshttp://lattes.cnpq.br/2506282113565352Alves, Eduardo Almeida2025-05-09T15:56:25Z2025-05-09T15:56:25Z2024-12-11http://repositorio.bc.ufg.br/tede/handle/tede/14263ark:/38995/001300000zv1rGrain yield remains the primary objective of plant breeding programs. Due to the quantitative and polygenic nature of this trait, recurrent selection methods are the most appropriate for achieving rapid and effective genetic gains, as they promote the continuous accumulation of favorable alleles. In common bean (Phaseolus vulgaris L.), successful cultivars consistently integrate high yield with commercial grain quality. The present study aimed to estimate genetic parameters and assess the genetic diversity of common bean progenies from the third cycle of recurrent selection for grain yield, within the black bean market class, to guide the composition of the subsequent selection and recombination cycle. To obtain experimental populations, 13 parental genotypes were utilized. In the initial generations, 500 progenies were evaluated at the S0:1, S0:2, and S0:3 stages, with 35 progenies selected for advancement to the S0:4 generation. The 35 S0:4 progenies, along with four control cultivars, were evaluated in field trials arranged in a randomized complete block design (RCBD) with three replications. The experimental plots consisted of three-row plots, each three meters in length, across five environments located in the states of Goiás and Paraná. The following agronomic traits were assessed: grain yield (GY) (kg ha⁻¹), 100-seed weight (100M) (g), sieve yield (SY) (%), lodging (LOD), and plant architecture (PAR). Additionally, disease resistance evaluations were conducted for Fusarium oxysporum (FOP) and anthracnose (AN). The genotypic characterization was performed using molecular data obtained from microsatellite (SSR) markers. Statistical analyses included analysis of variance, estimation of genetic parameters, and the calculation of genetic, phenotypic, and environmental correlations. The SSR marker data were used to estimate genetic divergence and population structure. For the selection of superior progenies, the Kennard-Stone algorithm and the Mulamba & Mock selection index were applied. The overall means for GY, 100M, and SY were 2846 kg ha⁻¹, 21.36 g, and 86.70%, respectively. Analysis of variance revealed a significant effect for genotypes, demonstrating genetic variability among progenies, as well as a significant genotype-by-environment interaction, indicating differential progeny responses across the tested environments. Heritability estimates were high for GY (67.97%) and 100M (90.67%) and intermediate for SY (74.29%). The expected genetic gain based on individual trait selection was 6.01% for GY, 3.47% for 100M, and 2.77% for SY. Molecular analysis revealed inconsistent clustering patterns and a lack of clear genetic structuring. Among the different selection strategies evaluated, the Mulamba & Mock index with economic weighting yielded the highest selection gains for GY (5.65%), 100M (1.29%), and SY (1.23%). Based on these results, ten superior progenies were selected for inclusion in the next recombination cycle. These progenies will be used to develop new elite lines and to generate the population for the subsequent cycle of recurrent selection.A produtividade de grãos segue como o principal objetivo dos programas de melhoramento. Em razão da natureza quantitativa e poligênica deste caráter, os métodos de seleção recorrente são os mais indicados para se conseguir avanços rápidos e efetivos, pois promovem o acúmulo contínuo de alelos favoráveis. Em feijão-comum, as cultivares de sucesso sempre associam produtividade com qualidade comercial de grãos. Objetivou-se neste trabalho estimar parâmetros e avaliar a diversidade genética de progênies de feijãocomum do terceiro ciclo de seleção recorrente para produtividade, do grupo preto, para composição do próximo ciclo de seleção e recombinação. Para obtenção das populações foram utilizados 13 genitores. Nas gerações iniciais foram avaliadas 500 progênies em S0:1, S0:2 e S0:3, sendo selecionadas 35 progênies para progresso da geração S0:4. As 35 progênies S0:4 e quatro testemunhas foram avaliadas em ensaios conduzidos em delineamento de blocos casualizados (DBC), com três repetições e parcelas de três linhas de três metros, em cinco ambientes, nos estados de Goiás e Paraná. Foi mensurado a produtividade (PROD) (kg ha- 1), massa de 100 grãos (M100) (g), rendimento de peneira (RP) (%), acamamento (ACA) e arquitetura de plantas (ARQ), resistência às doenças, como Fusarium oxysporum (FOP) e antracnose (AN). Os genótipos foram amostrados para acesso da informação molecular por meio de marcadores microssatélites (SSR). Realizou-se análise de variância, estimação de parâmetros genéticos e correlações genéticas, fenotípicas e ambientais. Os dados dos marcadores SSR foram utilizados para estimação da divergência e estruturação genética. Para seleção das melhores progênies utilizou-se o algoritmo Kennard-Stone e o índice de seleção de Mulamba & Mock. As médias gerais para PROD, M100 e RP foram 2846 kg ha- 1, 21,36 gramas e 86,70%, respectivamente. A análise de variância demonstrou efeito significativo para genótipos, evidenciando variabilidade genética entre as progênies, e para a interação genótipos por ambientes, indicando resposta diferencial das progênies nos diferentes ambientes. A herdabilidade evidenciou alta magnitude para PROD, com 67,97%, alta para M100, com 90,67%, e intermediária para RP, com 74,29%. O ganho esperado considerando a seleção individualizada de caracteres foi de 6,01%, 3,47% e 2,77% para PROD, M100 e RP, respectivamente. A análise molecular indicou agrupamento não consistente e ausência de estruturação genética. Dentre as diferentes estratégias de seleção, utilizando o índice de Mulamba & Mock, o uso do índice com pesos econômicos alcançou melhor ganhos com a seleção concomitante para PROD (5,65%), M100 (1,29%) e RP (1,23%). Para composição do próximo ciclo de recombinação dez progênies foram selecionadas. As dez progênies superiores serão utilizadas para desenvolver novas linhagens elite e para recombinação que dará origem a população do próximo ciclo de seleção recorrente.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESUniversidade Federal de GoiásPrograma de Pós-graduação em Genética e Melhoramento de Plantas (EA)UFGBrasilEscola de Agronomia - EA (RMG)ALVES, E. A. Variabilidade genética de progênies de feijão-comum do grupo preto do quarto ciclo de seleção recorrente para produtividade. 2025. 126 f. Dissertação (Mestrado em Genética e Melhoramento de Plantas) - Escola de Agronomia, Universidade Federal de Goiás, Goiânia, 2024.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessPhaseolus vulgaris L.Progresso genéticoParâmetros genéticosDiversidade genéticaMétodos de seleçãoGenetic progressGenetic parametersGenetic diversitySelection methodsCIENCIAS AGRARIAS::AGRONOMIAVariabilidade genética de progênies de feijão-comum do grupo preto do quarto ciclo de seleção recorrente para produtividadeGenetic variability of common bean progenies of the black group from the fourth cycle of recurrent selection for grain yieldinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.bc.ufg.br/tede/bitstreams/4fcab584-d931-43fd-8e31-67cf6bb0c9ce/download8a4605be74aa9ea9d79846c1fba20a33MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.bc.ufg.br/tede/bitstreams/69db0255-0dcc-4546-bb22-489eef402b80/download4460e5956bc1d1639be9ae6146a50347MD52ORIGINALDissertação - Eduardo Almeida Alves - 2025.pdfDissertação - Eduardo Almeida Alves - 2025.pdfapplication/pdf2811622http://repositorio.bc.ufg.br/tede/bitstreams/ebb28f9e-41f2-4b8c-837f-b33116baa90e/downloadbf63954009add20ac2d3d2712237c3f1MD53tede/142632025-05-09 12:56:25.643http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/14263http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttps://repositorio.bc.ufg.br/tedeserver/oai/requestgrt.bc@ufg.bropendoar:oai:repositorio.bc.ufg.br:tede/12342025-05-09T15:56:25Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
dc.title.none.fl_str_mv Variabilidade genética de progênies de feijão-comum do grupo preto do quarto ciclo de seleção recorrente para produtividade
dc.title.alternative.eng.fl_str_mv Genetic variability of common bean progenies of the black group from the fourth cycle of recurrent selection for grain yield
title Variabilidade genética de progênies de feijão-comum do grupo preto do quarto ciclo de seleção recorrente para produtividade
spellingShingle Variabilidade genética de progênies de feijão-comum do grupo preto do quarto ciclo de seleção recorrente para produtividade
Alves, Eduardo Almeida
Phaseolus vulgaris L.
Progresso genético
Parâmetros genéticos
Diversidade genética
Métodos de seleção
Genetic progress
Genetic parameters
Genetic diversity
Selection methods
CIENCIAS AGRARIAS::AGRONOMIA
title_short Variabilidade genética de progênies de feijão-comum do grupo preto do quarto ciclo de seleção recorrente para produtividade
title_full Variabilidade genética de progênies de feijão-comum do grupo preto do quarto ciclo de seleção recorrente para produtividade
title_fullStr Variabilidade genética de progênies de feijão-comum do grupo preto do quarto ciclo de seleção recorrente para produtividade
title_full_unstemmed Variabilidade genética de progênies de feijão-comum do grupo preto do quarto ciclo de seleção recorrente para produtividade
title_sort Variabilidade genética de progênies de feijão-comum do grupo preto do quarto ciclo de seleção recorrente para produtividade
author Alves, Eduardo Almeida
author_facet Alves, Eduardo Almeida
author_role author
dc.contributor.advisor1.fl_str_mv Melo, Patrícia Guimarães Santos
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1508679345970114
dc.contributor.advisor-co1.fl_str_mv Melo, Leonardo Cunha
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/9132553601896172
dc.contributor.advisor-co2.fl_str_mv Pereira, Helton Santos
dc.contributor.advisor-co2Lattes.fl_str_mv http://lattes.cnpq.br/0729719587905292
dc.contributor.referee1.fl_str_mv Melo, Patrícia Guimarães Santos
dc.contributor.referee2.fl_str_mv Silva Filho, João Luis da
dc.contributor.referee3.fl_str_mv Coelho, Alexandre Siqueira Guedes
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/2506282113565352
dc.contributor.author.fl_str_mv Alves, Eduardo Almeida
contributor_str_mv Melo, Patrícia Guimarães Santos
Melo, Leonardo Cunha
Pereira, Helton Santos
Melo, Patrícia Guimarães Santos
Silva Filho, João Luis da
Coelho, Alexandre Siqueira Guedes
dc.subject.por.fl_str_mv Phaseolus vulgaris L.
Progresso genético
Parâmetros genéticos
Diversidade genética
Métodos de seleção
topic Phaseolus vulgaris L.
Progresso genético
Parâmetros genéticos
Diversidade genética
Métodos de seleção
Genetic progress
Genetic parameters
Genetic diversity
Selection methods
CIENCIAS AGRARIAS::AGRONOMIA
dc.subject.eng.fl_str_mv Genetic progress
Genetic parameters
Genetic diversity
Selection methods
dc.subject.cnpq.fl_str_mv CIENCIAS AGRARIAS::AGRONOMIA
description Grain yield remains the primary objective of plant breeding programs. Due to the quantitative and polygenic nature of this trait, recurrent selection methods are the most appropriate for achieving rapid and effective genetic gains, as they promote the continuous accumulation of favorable alleles. In common bean (Phaseolus vulgaris L.), successful cultivars consistently integrate high yield with commercial grain quality. The present study aimed to estimate genetic parameters and assess the genetic diversity of common bean progenies from the third cycle of recurrent selection for grain yield, within the black bean market class, to guide the composition of the subsequent selection and recombination cycle. To obtain experimental populations, 13 parental genotypes were utilized. In the initial generations, 500 progenies were evaluated at the S0:1, S0:2, and S0:3 stages, with 35 progenies selected for advancement to the S0:4 generation. The 35 S0:4 progenies, along with four control cultivars, were evaluated in field trials arranged in a randomized complete block design (RCBD) with three replications. The experimental plots consisted of three-row plots, each three meters in length, across five environments located in the states of Goiás and Paraná. The following agronomic traits were assessed: grain yield (GY) (kg ha⁻¹), 100-seed weight (100M) (g), sieve yield (SY) (%), lodging (LOD), and plant architecture (PAR). Additionally, disease resistance evaluations were conducted for Fusarium oxysporum (FOP) and anthracnose (AN). The genotypic characterization was performed using molecular data obtained from microsatellite (SSR) markers. Statistical analyses included analysis of variance, estimation of genetic parameters, and the calculation of genetic, phenotypic, and environmental correlations. The SSR marker data were used to estimate genetic divergence and population structure. For the selection of superior progenies, the Kennard-Stone algorithm and the Mulamba & Mock selection index were applied. The overall means for GY, 100M, and SY were 2846 kg ha⁻¹, 21.36 g, and 86.70%, respectively. Analysis of variance revealed a significant effect for genotypes, demonstrating genetic variability among progenies, as well as a significant genotype-by-environment interaction, indicating differential progeny responses across the tested environments. Heritability estimates were high for GY (67.97%) and 100M (90.67%) and intermediate for SY (74.29%). The expected genetic gain based on individual trait selection was 6.01% for GY, 3.47% for 100M, and 2.77% for SY. Molecular analysis revealed inconsistent clustering patterns and a lack of clear genetic structuring. Among the different selection strategies evaluated, the Mulamba & Mock index with economic weighting yielded the highest selection gains for GY (5.65%), 100M (1.29%), and SY (1.23%). Based on these results, ten superior progenies were selected for inclusion in the next recombination cycle. These progenies will be used to develop new elite lines and to generate the population for the subsequent cycle of recurrent selection.
publishDate 2024
dc.date.issued.fl_str_mv 2024-12-11
dc.date.accessioned.fl_str_mv 2025-05-09T15:56:25Z
dc.date.available.fl_str_mv 2025-05-09T15:56:25Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/14263
dc.identifier.dark.fl_str_mv ark:/38995/001300000zv1r
url http://repositorio.bc.ufg.br/tede/handle/tede/14263
identifier_str_mv ark:/38995/001300000zv1r
dc.language.iso.fl_str_mv por
language por
dc.relation.references.none.fl_str_mv ALVES, E. A. Variabilidade genética de progênies de feijão-comum do grupo preto do quarto ciclo de seleção recorrente para produtividade. 2025. 126 f. Dissertação (Mestrado em Genética e Melhoramento de Plantas) - Escola de Agronomia, Universidade Federal de Goiás, Goiânia, 2024.
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Genética e Melhoramento de Plantas (EA)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Escola de Agronomia - EA (RMG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/4fcab584-d931-43fd-8e31-67cf6bb0c9ce/download
http://repositorio.bc.ufg.br/tede/bitstreams/69db0255-0dcc-4546-bb22-489eef402b80/download
http://repositorio.bc.ufg.br/tede/bitstreams/ebb28f9e-41f2-4b8c-837f-b33116baa90e/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
4460e5956bc1d1639be9ae6146a50347
bf63954009add20ac2d3d2712237c3f1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv grt.bc@ufg.br
_version_ 1846536667361443840