Evolutionary approaches for endmember extraction in hyperspectral unmixing using genetic algorithms
| Ano de defesa: | 2019 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | , , |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| dARK ID: | ark:/38995/0013000009c2p |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Goiás
|
| Programa de Pós-Graduação: |
Programa de Pós-graduação em Ciência da Computação (INF)
|
| Departamento: |
Instituto de Informática - INF (RG)
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | http://repositorio.bc.ufg.br/tede/handle/tede/9999 |
Resumo: | Endmember Extraction is a critical step in hyperspectral unmixing and classification providing the basis for applications such as identification of minerals, vegetation analysis, geographical survey, disaster management and target identification in military applications. The endemember extraction determines the basic constituent materials contained in the hyperspectral image while providing the requirements to the abundance inversion process, used to obtain the percentage of several endmembers in each pixel. Nevertheless, low spatial resolution and computing time are the two major difficulties, the first due to the spatial interactions of different fractions of mixed endmembers and the second due to strict and extensive search utilized in state-of-the-art methods. Three evolutionary endmember extractors are proposed, so-called GAEE, GAEEIVFm and GAEEII. The first is based on solving a linear endmember extraction problem as an evolutionary optimization task, maximizing the simplex volume in the endmember search space, GAEE-IVFm represents a variation with of the GAEE with an In Vitro Fertilization module, and the GAEEII is a multi-epochs genetic algorithm with enhancements to the naive genetic algorithm endmember extractor (GAEE). To demonstrate the superiority of the proposed methods, extensive experiments are conducted on several well-known real and synthetic hyperspectral images, as well as a possible relationship between the spectral angle distance (SAD) and the volume of the simplex. The results confirm that the proposed methods considerably improved, up to three times increase in accuracy and scalable computing time compared to the state-of-the-art techniques in the literature including recent developments. |
| id |
UFG-2_e1c75e77aeffd290071ab98b8c237637 |
|---|---|
| oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/9999 |
| network_acronym_str |
UFG-2 |
| network_name_str |
Repositório Institucional da UFG |
| repository_id_str |
|
| spelling |
Laureano, Gustavo Teodorohttp://lattes.cnpq.br/4418446095942420Laureano, Gustavo TeodoroCoelho, Clarimar JoseSoares, Anderson da Silvahttp://lattes.cnpq.br/9740011792985172Soares, Douglas Winston Ribeiro2019-09-10T12:19:24Z2019-08-05SOARES, Douglas Winston Ribeiro. Evolutionary approaches for endmember extraction in hyperspectral unmixing using genetic algorithms. 2019. 66 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2019.http://repositorio.bc.ufg.br/tede/handle/tede/9999ark:/38995/0013000009c2pEndmember Extraction is a critical step in hyperspectral unmixing and classification providing the basis for applications such as identification of minerals, vegetation analysis, geographical survey, disaster management and target identification in military applications. The endemember extraction determines the basic constituent materials contained in the hyperspectral image while providing the requirements to the abundance inversion process, used to obtain the percentage of several endmembers in each pixel. Nevertheless, low spatial resolution and computing time are the two major difficulties, the first due to the spatial interactions of different fractions of mixed endmembers and the second due to strict and extensive search utilized in state-of-the-art methods. Three evolutionary endmember extractors are proposed, so-called GAEE, GAEEIVFm and GAEEII. The first is based on solving a linear endmember extraction problem as an evolutionary optimization task, maximizing the simplex volume in the endmember search space, GAEE-IVFm represents a variation with of the GAEE with an In Vitro Fertilization module, and the GAEEII is a multi-epochs genetic algorithm with enhancements to the naive genetic algorithm endmember extractor (GAEE). To demonstrate the superiority of the proposed methods, extensive experiments are conducted on several well-known real and synthetic hyperspectral images, as well as a possible relationship between the spectral angle distance (SAD) and the volume of the simplex. The results confirm that the proposed methods considerably improved, up to three times increase in accuracy and scalable computing time compared to the state-of-the-art techniques in the literature including recent developments.Extração de Endmembers é uma etapa crítica no processo de desmistura e classificação de imagens hiperespectrais, fornecendo a base para aplicações como identificação de minerais, análise de vegetação, levantamento geográfico, gerenciamento de desastres e identificação de objetos alvos em aplicações militares. A extração de endmembers é um procedimento que possibilita determinar os materiais constituintes básicos contidos no pixel de uma imagem hiperespectral, fornecendo os requisitos para o processo de inversão de abundância usado para obter a porcentagem de ocorrência de cada endmember em cada pixel. No entanto, a baixa resolução espacial e o tempo de computação são as maiores dificuldades, a primeira devido às interações espaciais de diferentes frações de endmembers e a segunda devido à busca extensiva utilizada em métodos tradicionais. São propostos três extratores de endmembers evolutivos, denominados GAEE, GAEE-IVFm e GAEEII. O primeiro é baseado na solução de um problema de extração de endmembers linear que se trata de uma tarefa de otimização evolutiva de maximizar o volume de um simplex, GAEE-IVFm representa uma variação do GAEE com um módulo de Fertilização In Vitro e GAEEII aplica um algoritmo genético multi épocas com algumas melhorias feitas no GAEE. Para demonstrar a superioridade dos métodos propostos, experimentos extensivos são conduzidos em várias imagens hiperespectrais reais e sintéticas bem conhecidas, assim como uma possível relação com a distância do ângulo espectral (SAD) e o volume do simplex gerado pelo conjunto de endmembers. Os resultados confirmam que os métodos propostos melhoram consideravelmente, em até três vezes, a precisão em um tempo computacional escalável quando comparado com as técnicas de ponta da literatura, incluindo desenvolvimentos recentes.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Ciência da Computação (INF)UFGBrasilInstituto de Informática - INF (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessDesmistura hiperespectralExtração de endmemberAlgoritmo genéticoComputação evolucionáriaHyperspectral unmixingEndmember extractionGenetic algorithmEvolutionary computingCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOEvolutionary approaches for endmember extraction in hyperspectral unmixing using genetic algorithmsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-3303550325223384799600600600600-771226673463364476836717112058112045092075167498588264571reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/7747493a-3c88-4b0f-8c67-c9f2107b979f/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/2067da79-988c-411c-babc-d0b2703f643b/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/d9e9e41e-1e55-4528-9c7e-fa27dd653d5f/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/961f9e78-5c11-4d05-9cab-ae106cef037d/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertação - Douglas Winston Ribeiro Soares - 2019.pdfDissertação - Douglas Winston Ribeiro Soares - 2019.pdfapplication/pdf7718674http://repositorio.bc.ufg.br/tede/bitstreams/7598b728-413c-4561-a7cf-7f472a5054c9/download40384865c11e202fb6e1fd66ba822b19MD55tede/99992019-09-10 09:19:24.595http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/9999http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttps://repositorio.bc.ufg.br/tedeserver/oai/requestgrt.bc@ufg.bropendoar:oai:repositorio.bc.ufg.br:tede/12342019-09-10T12:19:24Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
| dc.title.eng.fl_str_mv |
Evolutionary approaches for endmember extraction in hyperspectral unmixing using genetic algorithms |
| title |
Evolutionary approaches for endmember extraction in hyperspectral unmixing using genetic algorithms |
| spellingShingle |
Evolutionary approaches for endmember extraction in hyperspectral unmixing using genetic algorithms Soares, Douglas Winston Ribeiro Desmistura hiperespectral Extração de endmember Algoritmo genético Computação evolucionária Hyperspectral unmixing Endmember extraction Genetic algorithm Evolutionary computing CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| title_short |
Evolutionary approaches for endmember extraction in hyperspectral unmixing using genetic algorithms |
| title_full |
Evolutionary approaches for endmember extraction in hyperspectral unmixing using genetic algorithms |
| title_fullStr |
Evolutionary approaches for endmember extraction in hyperspectral unmixing using genetic algorithms |
| title_full_unstemmed |
Evolutionary approaches for endmember extraction in hyperspectral unmixing using genetic algorithms |
| title_sort |
Evolutionary approaches for endmember extraction in hyperspectral unmixing using genetic algorithms |
| author |
Soares, Douglas Winston Ribeiro |
| author_facet |
Soares, Douglas Winston Ribeiro |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
Laureano, Gustavo Teodoro |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/4418446095942420 |
| dc.contributor.referee1.fl_str_mv |
Laureano, Gustavo Teodoro |
| dc.contributor.referee2.fl_str_mv |
Coelho, Clarimar Jose |
| dc.contributor.referee3.fl_str_mv |
Soares, Anderson da Silva |
| dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/9740011792985172 |
| dc.contributor.author.fl_str_mv |
Soares, Douglas Winston Ribeiro |
| contributor_str_mv |
Laureano, Gustavo Teodoro Laureano, Gustavo Teodoro Coelho, Clarimar Jose Soares, Anderson da Silva |
| dc.subject.por.fl_str_mv |
Desmistura hiperespectral Extração de endmember Algoritmo genético Computação evolucionária |
| topic |
Desmistura hiperespectral Extração de endmember Algoritmo genético Computação evolucionária Hyperspectral unmixing Endmember extraction Genetic algorithm Evolutionary computing CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| dc.subject.eng.fl_str_mv |
Hyperspectral unmixing Endmember extraction Genetic algorithm Evolutionary computing |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| description |
Endmember Extraction is a critical step in hyperspectral unmixing and classification providing the basis for applications such as identification of minerals, vegetation analysis, geographical survey, disaster management and target identification in military applications. The endemember extraction determines the basic constituent materials contained in the hyperspectral image while providing the requirements to the abundance inversion process, used to obtain the percentage of several endmembers in each pixel. Nevertheless, low spatial resolution and computing time are the two major difficulties, the first due to the spatial interactions of different fractions of mixed endmembers and the second due to strict and extensive search utilized in state-of-the-art methods. Three evolutionary endmember extractors are proposed, so-called GAEE, GAEEIVFm and GAEEII. The first is based on solving a linear endmember extraction problem as an evolutionary optimization task, maximizing the simplex volume in the endmember search space, GAEE-IVFm represents a variation with of the GAEE with an In Vitro Fertilization module, and the GAEEII is a multi-epochs genetic algorithm with enhancements to the naive genetic algorithm endmember extractor (GAEE). To demonstrate the superiority of the proposed methods, extensive experiments are conducted on several well-known real and synthetic hyperspectral images, as well as a possible relationship between the spectral angle distance (SAD) and the volume of the simplex. The results confirm that the proposed methods considerably improved, up to three times increase in accuracy and scalable computing time compared to the state-of-the-art techniques in the literature including recent developments. |
| publishDate |
2019 |
| dc.date.accessioned.fl_str_mv |
2019-09-10T12:19:24Z |
| dc.date.issued.fl_str_mv |
2019-08-05 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
SOARES, Douglas Winston Ribeiro. Evolutionary approaches for endmember extraction in hyperspectral unmixing using genetic algorithms. 2019. 66 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2019. |
| dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/9999 |
| dc.identifier.dark.fl_str_mv |
ark:/38995/0013000009c2p |
| identifier_str_mv |
SOARES, Douglas Winston Ribeiro. Evolutionary approaches for endmember extraction in hyperspectral unmixing using genetic algorithms. 2019. 66 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2019. ark:/38995/0013000009c2p |
| url |
http://repositorio.bc.ufg.br/tede/handle/tede/9999 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.program.fl_str_mv |
-3303550325223384799 |
| dc.relation.confidence.fl_str_mv |
600 600 600 600 |
| dc.relation.department.fl_str_mv |
-7712266734633644768 |
| dc.relation.cnpq.fl_str_mv |
3671711205811204509 |
| dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
| dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
| dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Ciência da Computação (INF) |
| dc.publisher.initials.fl_str_mv |
UFG |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
Instituto de Informática - INF (RG) |
| publisher.none.fl_str_mv |
Universidade Federal de Goiás |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
| instname_str |
Universidade Federal de Goiás (UFG) |
| instacron_str |
UFG |
| institution |
UFG |
| reponame_str |
Repositório Institucional da UFG |
| collection |
Repositório Institucional da UFG |
| bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/7747493a-3c88-4b0f-8c67-c9f2107b979f/download http://repositorio.bc.ufg.br/tede/bitstreams/2067da79-988c-411c-babc-d0b2703f643b/download http://repositorio.bc.ufg.br/tede/bitstreams/d9e9e41e-1e55-4528-9c7e-fa27dd653d5f/download http://repositorio.bc.ufg.br/tede/bitstreams/961f9e78-5c11-4d05-9cab-ae106cef037d/download http://repositorio.bc.ufg.br/tede/bitstreams/7598b728-413c-4561-a7cf-7f472a5054c9/download |
| bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 40384865c11e202fb6e1fd66ba822b19 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
| repository.mail.fl_str_mv |
grt.bc@ufg.br |
| _version_ |
1846536705787559936 |