Evolutionary approaches for endmember extraction in hyperspectral unmixing using genetic algorithms

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Soares, Douglas Winston Ribeiro lattes
Orientador(a): Laureano, Gustavo Teodoro lattes
Banca de defesa: Laureano, Gustavo Teodoro, Coelho, Clarimar Jose, Soares, Anderson da Silva
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
dARK ID: ark:/38995/0013000009c2p
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Ciência da Computação (INF)
Departamento: Instituto de Informática - INF (RG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/9999
Resumo: Endmember Extraction is a critical step in hyperspectral unmixing and classification providing the basis for applications such as identification of minerals, vegetation analysis, geographical survey, disaster management and target identification in military applications. The endemember extraction determines the basic constituent materials contained in the hyperspectral image while providing the requirements to the abundance inversion process, used to obtain the percentage of several endmembers in each pixel. Nevertheless, low spatial resolution and computing time are the two major difficulties, the first due to the spatial interactions of different fractions of mixed endmembers and the second due to strict and extensive search utilized in state-of-the-art methods. Three evolutionary endmember extractors are proposed, so-called GAEE, GAEEIVFm and GAEEII. The first is based on solving a linear endmember extraction problem as an evolutionary optimization task, maximizing the simplex volume in the endmember search space, GAEE-IVFm represents a variation with of the GAEE with an In Vitro Fertilization module, and the GAEEII is a multi-epochs genetic algorithm with enhancements to the naive genetic algorithm endmember extractor (GAEE). To demonstrate the superiority of the proposed methods, extensive experiments are conducted on several well-known real and synthetic hyperspectral images, as well as a possible relationship between the spectral angle distance (SAD) and the volume of the simplex. The results confirm that the proposed methods considerably improved, up to three times increase in accuracy and scalable computing time compared to the state-of-the-art techniques in the literature including recent developments.
id UFG-2_e1c75e77aeffd290071ab98b8c237637
oai_identifier_str oai:repositorio.bc.ufg.br:tede/9999
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Laureano, Gustavo Teodorohttp://lattes.cnpq.br/4418446095942420Laureano, Gustavo TeodoroCoelho, Clarimar JoseSoares, Anderson da Silvahttp://lattes.cnpq.br/9740011792985172Soares, Douglas Winston Ribeiro2019-09-10T12:19:24Z2019-08-05SOARES, Douglas Winston Ribeiro. Evolutionary approaches for endmember extraction in hyperspectral unmixing using genetic algorithms. 2019. 66 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2019.http://repositorio.bc.ufg.br/tede/handle/tede/9999ark:/38995/0013000009c2pEndmember Extraction is a critical step in hyperspectral unmixing and classification providing the basis for applications such as identification of minerals, vegetation analysis, geographical survey, disaster management and target identification in military applications. The endemember extraction determines the basic constituent materials contained in the hyperspectral image while providing the requirements to the abundance inversion process, used to obtain the percentage of several endmembers in each pixel. Nevertheless, low spatial resolution and computing time are the two major difficulties, the first due to the spatial interactions of different fractions of mixed endmembers and the second due to strict and extensive search utilized in state-of-the-art methods. Three evolutionary endmember extractors are proposed, so-called GAEE, GAEEIVFm and GAEEII. The first is based on solving a linear endmember extraction problem as an evolutionary optimization task, maximizing the simplex volume in the endmember search space, GAEE-IVFm represents a variation with of the GAEE with an In Vitro Fertilization module, and the GAEEII is a multi-epochs genetic algorithm with enhancements to the naive genetic algorithm endmember extractor (GAEE). To demonstrate the superiority of the proposed methods, extensive experiments are conducted on several well-known real and synthetic hyperspectral images, as well as a possible relationship between the spectral angle distance (SAD) and the volume of the simplex. The results confirm that the proposed methods considerably improved, up to three times increase in accuracy and scalable computing time compared to the state-of-the-art techniques in the literature including recent developments.Extração de Endmembers é uma etapa crítica no processo de desmistura e classificação de imagens hiperespectrais, fornecendo a base para aplicações como identificação de minerais, análise de vegetação, levantamento geográfico, gerenciamento de desastres e identificação de objetos alvos em aplicações militares. A extração de endmembers é um procedimento que possibilita determinar os materiais constituintes básicos contidos no pixel de uma imagem hiperespectral, fornecendo os requisitos para o processo de inversão de abundância usado para obter a porcentagem de ocorrência de cada endmember em cada pixel. No entanto, a baixa resolução espacial e o tempo de computação são as maiores dificuldades, a primeira devido às interações espaciais de diferentes frações de endmembers e a segunda devido à busca extensiva utilizada em métodos tradicionais. São propostos três extratores de endmembers evolutivos, denominados GAEE, GAEE-IVFm e GAEEII. O primeiro é baseado na solução de um problema de extração de endmembers linear que se trata de uma tarefa de otimização evolutiva de maximizar o volume de um simplex, GAEE-IVFm representa uma variação do GAEE com um módulo de Fertilização In Vitro e GAEEII aplica um algoritmo genético multi épocas com algumas melhorias feitas no GAEE. Para demonstrar a superioridade dos métodos propostos, experimentos extensivos são conduzidos em várias imagens hiperespectrais reais e sintéticas bem conhecidas, assim como uma possível relação com a distância do ângulo espectral (SAD) e o volume do simplex gerado pelo conjunto de endmembers. Os resultados confirmam que os métodos propostos melhoram consideravelmente, em até três vezes, a precisão em um tempo computacional escalável quando comparado com as técnicas de ponta da literatura, incluindo desenvolvimentos recentes.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Ciência da Computação (INF)UFGBrasilInstituto de Informática - INF (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessDesmistura hiperespectralExtração de endmemberAlgoritmo genéticoComputação evolucionáriaHyperspectral unmixingEndmember extractionGenetic algorithmEvolutionary computingCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOEvolutionary approaches for endmember extraction in hyperspectral unmixing using genetic algorithmsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-3303550325223384799600600600600-771226673463364476836717112058112045092075167498588264571reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/7747493a-3c88-4b0f-8c67-c9f2107b979f/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/2067da79-988c-411c-babc-d0b2703f643b/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/d9e9e41e-1e55-4528-9c7e-fa27dd653d5f/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/961f9e78-5c11-4d05-9cab-ae106cef037d/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertação - Douglas Winston Ribeiro Soares - 2019.pdfDissertação - Douglas Winston Ribeiro Soares - 2019.pdfapplication/pdf7718674http://repositorio.bc.ufg.br/tede/bitstreams/7598b728-413c-4561-a7cf-7f472a5054c9/download40384865c11e202fb6e1fd66ba822b19MD55tede/99992019-09-10 09:19:24.595http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/9999http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttps://repositorio.bc.ufg.br/tedeserver/oai/requestgrt.bc@ufg.bropendoar:oai:repositorio.bc.ufg.br:tede/12342019-09-10T12:19:24Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.eng.fl_str_mv Evolutionary approaches for endmember extraction in hyperspectral unmixing using genetic algorithms
title Evolutionary approaches for endmember extraction in hyperspectral unmixing using genetic algorithms
spellingShingle Evolutionary approaches for endmember extraction in hyperspectral unmixing using genetic algorithms
Soares, Douglas Winston Ribeiro
Desmistura hiperespectral
Extração de endmember
Algoritmo genético
Computação evolucionária
Hyperspectral unmixing
Endmember extraction
Genetic algorithm
Evolutionary computing
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Evolutionary approaches for endmember extraction in hyperspectral unmixing using genetic algorithms
title_full Evolutionary approaches for endmember extraction in hyperspectral unmixing using genetic algorithms
title_fullStr Evolutionary approaches for endmember extraction in hyperspectral unmixing using genetic algorithms
title_full_unstemmed Evolutionary approaches for endmember extraction in hyperspectral unmixing using genetic algorithms
title_sort Evolutionary approaches for endmember extraction in hyperspectral unmixing using genetic algorithms
author Soares, Douglas Winston Ribeiro
author_facet Soares, Douglas Winston Ribeiro
author_role author
dc.contributor.advisor1.fl_str_mv Laureano, Gustavo Teodoro
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4418446095942420
dc.contributor.referee1.fl_str_mv Laureano, Gustavo Teodoro
dc.contributor.referee2.fl_str_mv Coelho, Clarimar Jose
dc.contributor.referee3.fl_str_mv Soares, Anderson da Silva
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/9740011792985172
dc.contributor.author.fl_str_mv Soares, Douglas Winston Ribeiro
contributor_str_mv Laureano, Gustavo Teodoro
Laureano, Gustavo Teodoro
Coelho, Clarimar Jose
Soares, Anderson da Silva
dc.subject.por.fl_str_mv Desmistura hiperespectral
Extração de endmember
Algoritmo genético
Computação evolucionária
topic Desmistura hiperespectral
Extração de endmember
Algoritmo genético
Computação evolucionária
Hyperspectral unmixing
Endmember extraction
Genetic algorithm
Evolutionary computing
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.eng.fl_str_mv Hyperspectral unmixing
Endmember extraction
Genetic algorithm
Evolutionary computing
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description Endmember Extraction is a critical step in hyperspectral unmixing and classification providing the basis for applications such as identification of minerals, vegetation analysis, geographical survey, disaster management and target identification in military applications. The endemember extraction determines the basic constituent materials contained in the hyperspectral image while providing the requirements to the abundance inversion process, used to obtain the percentage of several endmembers in each pixel. Nevertheless, low spatial resolution and computing time are the two major difficulties, the first due to the spatial interactions of different fractions of mixed endmembers and the second due to strict and extensive search utilized in state-of-the-art methods. Three evolutionary endmember extractors are proposed, so-called GAEE, GAEEIVFm and GAEEII. The first is based on solving a linear endmember extraction problem as an evolutionary optimization task, maximizing the simplex volume in the endmember search space, GAEE-IVFm represents a variation with of the GAEE with an In Vitro Fertilization module, and the GAEEII is a multi-epochs genetic algorithm with enhancements to the naive genetic algorithm endmember extractor (GAEE). To demonstrate the superiority of the proposed methods, extensive experiments are conducted on several well-known real and synthetic hyperspectral images, as well as a possible relationship between the spectral angle distance (SAD) and the volume of the simplex. The results confirm that the proposed methods considerably improved, up to three times increase in accuracy and scalable computing time compared to the state-of-the-art techniques in the literature including recent developments.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-09-10T12:19:24Z
dc.date.issued.fl_str_mv 2019-08-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SOARES, Douglas Winston Ribeiro. Evolutionary approaches for endmember extraction in hyperspectral unmixing using genetic algorithms. 2019. 66 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2019.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/9999
dc.identifier.dark.fl_str_mv ark:/38995/0013000009c2p
identifier_str_mv SOARES, Douglas Winston Ribeiro. Evolutionary approaches for endmember extraction in hyperspectral unmixing using genetic algorithms. 2019. 66 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2019.
ark:/38995/0013000009c2p
url http://repositorio.bc.ufg.br/tede/handle/tede/9999
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -3303550325223384799
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -7712266734633644768
dc.relation.cnpq.fl_str_mv 3671711205811204509
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Ciência da Computação (INF)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Informática - INF (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/7747493a-3c88-4b0f-8c67-c9f2107b979f/download
http://repositorio.bc.ufg.br/tede/bitstreams/2067da79-988c-411c-babc-d0b2703f643b/download
http://repositorio.bc.ufg.br/tede/bitstreams/d9e9e41e-1e55-4528-9c7e-fa27dd653d5f/download
http://repositorio.bc.ufg.br/tede/bitstreams/961f9e78-5c11-4d05-9cab-ae106cef037d/download
http://repositorio.bc.ufg.br/tede/bitstreams/7598b728-413c-4561-a7cf-7f472a5054c9/download
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
40384865c11e202fb6e1fd66ba822b19
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv grt.bc@ufg.br
_version_ 1846536705787559936