Predição de diâmetros e cálculo de volume de clones de eucalipto: uma abordagem com redes multi layer perceptron e long-short term memory

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Rodrigues, Welington Galvão lattes
Orientador(a): Soares, Fabrízzio Alphonsus Alves de Melo Nunes lattes
Banca de defesa: Soares, Fabrizzio Alphonsus Alves de Melo Nunes, Fernandes, Deborah Silva Alves, Cabacinha, Christian Dias
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
dARK ID: ark:/38995/00130000006hv
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Ciência da Computação (INF)
Departamento: Instituto de Informática - INF (RG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/10005
Resumo: Effective management of forest resources is of great importance to the success of a forest enterprise. Obtaining accurate information on planted forests is essential for effective forest activity planning. In this sense, the forest inventory is the procedure used to obtain qualitative and quantitative information from a given region. Through inventory it, is possible, for example, to quantify trees, identify species of a settlement and obtain the total volume to be explored. The total volume is one of the most important elements for the exploration of a given area. Companies use information obtained from forest management inventory to establish the number of trees to be removed without disrupting the natural cycle of forests. For the forest enterprise, it is desirable to obtain the necessary information from a stand without raising costs. Thus, statistical methods provide a way to exploit this information without raising the cost by delivering a near-real result. Several works in the literature apply artificial neural networks in several areas of the forest sector, the results obtained by them have been quite promising for problems of classification and prediction of forest resources. In this context, the present work presents a study on the development of models built through neural networks of different architectures, especially the \ textit {Multi layer Perceptron} and \ textit {Long-Short Term Memory} networks, besides the statistical analysis of the models. For diameter prediction and volume calculation of eucalyptus clones. The results achieved by the models were compared with the values obtained by rigorous cubing and by the Schumacher and Hall model (log). The models built by Long-Short Term Memory networks showed good generalization capacity and were superior for estimating diameters and calculating eucalyptus volume in other sites not available during the training phase. In addition to presenting results quite close to those obtained through rigorous cubing. In general, the results were quite satisfactory concerning the statistical methods present in the literature.
id UFG-2_f9d5678def2f969b1270ee252dfaaa98
oai_identifier_str oai:repositorio.bc.ufg.br:tede/10005
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Soares, Fabrízzio Alphonsus Alves de Melo Nuneshttp://lattes.cnpq.br/7206645857721831Soares, Fabrizzio Alphonsus Alves de Melo NunesFernandes, Deborah Silva AlvesCabacinha, Christian Diashttp://lattes.cnpq.br/7647778556346999Rodrigues, Welington Galvão2019-09-11T15:27:00Z2019-08-15RODRIGUES, W. G. Predição de diâmetros e cálculo de volume de clones de eucalipto: uma abordagem com redes multi layer perceptron e long-short term memory. 2019. 93 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2019.http://repositorio.bc.ufg.br/tede/handle/tede/10005ark:/38995/00130000006hvEffective management of forest resources is of great importance to the success of a forest enterprise. Obtaining accurate information on planted forests is essential for effective forest activity planning. In this sense, the forest inventory is the procedure used to obtain qualitative and quantitative information from a given region. Through inventory it, is possible, for example, to quantify trees, identify species of a settlement and obtain the total volume to be explored. The total volume is one of the most important elements for the exploration of a given area. Companies use information obtained from forest management inventory to establish the number of trees to be removed without disrupting the natural cycle of forests. For the forest enterprise, it is desirable to obtain the necessary information from a stand without raising costs. Thus, statistical methods provide a way to exploit this information without raising the cost by delivering a near-real result. Several works in the literature apply artificial neural networks in several areas of the forest sector, the results obtained by them have been quite promising for problems of classification and prediction of forest resources. In this context, the present work presents a study on the development of models built through neural networks of different architectures, especially the \ textit {Multi layer Perceptron} and \ textit {Long-Short Term Memory} networks, besides the statistical analysis of the models. For diameter prediction and volume calculation of eucalyptus clones. The results achieved by the models were compared with the values obtained by rigorous cubing and by the Schumacher and Hall model (log). The models built by Long-Short Term Memory networks showed good generalization capacity and were superior for estimating diameters and calculating eucalyptus volume in other sites not available during the training phase. In addition to presenting results quite close to those obtained through rigorous cubing. In general, the results were quite satisfactory concerning the statistical methods present in the literature.O gerenciamento efetivo dos recursos florestais é de grande importância para o sucesso de um empreendimento florestal. Obter informações precisas de florestas plantadas é essencial para o planejamento eficaz da atividade florestal. Neste sentido, o inventário florestal é o procedimento utilizado para obter as informações qualitativas e quantitativas de uma determinada região. Através dele é possível, por exemplo, quantificar árvores, identificar as espécies de um povoamento e obter o volume total a ser explorado. O volume constitui um dos elementos mais importantes para a exploração de uma determinada área. Empresas usam informações obtidas através do inventário para o manejo florestal estabelecendo a quantidade de árvores a serem retiradas sem interromper o ciclo natural das florestas. Para o empreendimento florestal é desejável obter as informações necessárias de um povoamento sem elevar os custos. Assim, os métodos estatísticos apresentam um caminho para explorar essas informações sem elevar o custo entregando um resultado próximo ao real. Vários trabalhos presentes na literatura aplicam redes neurais artificias em diversas áreas do setor florestal, os resultados obtidos por elas mostraram-se bastantes promissores para problemas de classificação e predição de recursos florestais. Neste contexto, o presente trabalho apresenta um estudo no desenvolvimento de modelos construídos através de redes neurais de diferentes arquiteturas, em especial as redes \textit{Multi layer Perceptron} e \textit{LongShort Term Memory}, além da análise estatística dos modelos para predição de diâmetros e cálculo de volume de clones de eucalipto. Os resultados alcançados pelos modelos foram comparados com os valores obtidos através de cubagem rigorosa e pelo modelo de Schumacher e Hall (log). Os modelos construídos pelas redes do tipo \textit{Long-Short Term Memory} apresentaram boa capacidade de generalização e mostraram-se superiores para estimar diâmetros e calcular volume de eucaliptos em demais sítios não disponíveis durante a fase de treinamento. Além de apresentar resultados bastantes próximos aos obtidos através da cubagem rigorosa. De modo geral os resultados mostraram-se bastante satisfatórios em relação aos métodos estatísticos e presentes na literatura.application/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Ciência da Computação (INF)UFGBrasilInstituto de Informática - INF (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessRedes neuraisLSTMInventário florestalNeural networksForest inventoryCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOPredição de diâmetros e cálculo de volume de clones de eucalipto: uma abordagem com redes multi layer perceptron e long-short term memoryPrediction of diameters and volume calculation of eucalyptus clonesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-3303550325223384799600600600-77122667346336447683671711205811204509reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/658fb4cd-cb2f-45d5-8605-38f76694d6dc/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/f0959bc8-2757-4901-9105-4b6a9204b133/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/38864285-6e85-44ed-bceb-cf472187305e/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/76ab4808-3ecd-4193-8656-975c856b18a8/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertação - Welington Galvão Rodrigues - 2019.pdfDissertação - Welington Galvão Rodrigues - 2019.pdfapplication/pdf6495429http://repositorio.bc.ufg.br/tede/bitstreams/83c3a964-00aa-4fc1-846d-1fa26c5f8d74/downloaddeee1eb4542247f23f338f831c4418b1MD55tede/100052019-09-11 12:27:00.402http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/10005http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttps://repositorio.bc.ufg.br/tedeserver/oai/requestgrt.bc@ufg.bropendoar:oai:repositorio.bc.ufg.br:tede/12342019-09-11T15:27Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.eng.fl_str_mv Predição de diâmetros e cálculo de volume de clones de eucalipto: uma abordagem com redes multi layer perceptron e long-short term memory
dc.title.alternative.eng.fl_str_mv Prediction of diameters and volume calculation of eucalyptus clones
title Predição de diâmetros e cálculo de volume de clones de eucalipto: uma abordagem com redes multi layer perceptron e long-short term memory
spellingShingle Predição de diâmetros e cálculo de volume de clones de eucalipto: uma abordagem com redes multi layer perceptron e long-short term memory
Rodrigues, Welington Galvão
Redes neurais
LSTM
Inventário florestal
Neural networks
Forest inventory
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Predição de diâmetros e cálculo de volume de clones de eucalipto: uma abordagem com redes multi layer perceptron e long-short term memory
title_full Predição de diâmetros e cálculo de volume de clones de eucalipto: uma abordagem com redes multi layer perceptron e long-short term memory
title_fullStr Predição de diâmetros e cálculo de volume de clones de eucalipto: uma abordagem com redes multi layer perceptron e long-short term memory
title_full_unstemmed Predição de diâmetros e cálculo de volume de clones de eucalipto: uma abordagem com redes multi layer perceptron e long-short term memory
title_sort Predição de diâmetros e cálculo de volume de clones de eucalipto: uma abordagem com redes multi layer perceptron e long-short term memory
author Rodrigues, Welington Galvão
author_facet Rodrigues, Welington Galvão
author_role author
dc.contributor.advisor1.fl_str_mv Soares, Fabrízzio Alphonsus Alves de Melo Nunes
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/7206645857721831
dc.contributor.referee1.fl_str_mv Soares, Fabrizzio Alphonsus Alves de Melo Nunes
dc.contributor.referee2.fl_str_mv Fernandes, Deborah Silva Alves
dc.contributor.referee3.fl_str_mv Cabacinha, Christian Dias
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7647778556346999
dc.contributor.author.fl_str_mv Rodrigues, Welington Galvão
contributor_str_mv Soares, Fabrízzio Alphonsus Alves de Melo Nunes
Soares, Fabrizzio Alphonsus Alves de Melo Nunes
Fernandes, Deborah Silva Alves
Cabacinha, Christian Dias
dc.subject.por.fl_str_mv Redes neurais
LSTM
Inventário florestal
topic Redes neurais
LSTM
Inventário florestal
Neural networks
Forest inventory
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.eng.fl_str_mv Neural networks
Forest inventory
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description Effective management of forest resources is of great importance to the success of a forest enterprise. Obtaining accurate information on planted forests is essential for effective forest activity planning. In this sense, the forest inventory is the procedure used to obtain qualitative and quantitative information from a given region. Through inventory it, is possible, for example, to quantify trees, identify species of a settlement and obtain the total volume to be explored. The total volume is one of the most important elements for the exploration of a given area. Companies use information obtained from forest management inventory to establish the number of trees to be removed without disrupting the natural cycle of forests. For the forest enterprise, it is desirable to obtain the necessary information from a stand without raising costs. Thus, statistical methods provide a way to exploit this information without raising the cost by delivering a near-real result. Several works in the literature apply artificial neural networks in several areas of the forest sector, the results obtained by them have been quite promising for problems of classification and prediction of forest resources. In this context, the present work presents a study on the development of models built through neural networks of different architectures, especially the \ textit {Multi layer Perceptron} and \ textit {Long-Short Term Memory} networks, besides the statistical analysis of the models. For diameter prediction and volume calculation of eucalyptus clones. The results achieved by the models were compared with the values obtained by rigorous cubing and by the Schumacher and Hall model (log). The models built by Long-Short Term Memory networks showed good generalization capacity and were superior for estimating diameters and calculating eucalyptus volume in other sites not available during the training phase. In addition to presenting results quite close to those obtained through rigorous cubing. In general, the results were quite satisfactory concerning the statistical methods present in the literature.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-09-11T15:27:00Z
dc.date.issued.fl_str_mv 2019-08-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv RODRIGUES, W. G. Predição de diâmetros e cálculo de volume de clones de eucalipto: uma abordagem com redes multi layer perceptron e long-short term memory. 2019. 93 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2019.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/10005
dc.identifier.dark.fl_str_mv ark:/38995/00130000006hv
identifier_str_mv RODRIGUES, W. G. Predição de diâmetros e cálculo de volume de clones de eucalipto: uma abordagem com redes multi layer perceptron e long-short term memory. 2019. 93 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2019.
ark:/38995/00130000006hv
url http://repositorio.bc.ufg.br/tede/handle/tede/10005
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -3303550325223384799
dc.relation.confidence.fl_str_mv 600
600
600
dc.relation.department.fl_str_mv -7712266734633644768
dc.relation.cnpq.fl_str_mv 3671711205811204509
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Ciência da Computação (INF)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Informática - INF (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/658fb4cd-cb2f-45d5-8605-38f76694d6dc/download
http://repositorio.bc.ufg.br/tede/bitstreams/f0959bc8-2757-4901-9105-4b6a9204b133/download
http://repositorio.bc.ufg.br/tede/bitstreams/38864285-6e85-44ed-bceb-cf472187305e/download
http://repositorio.bc.ufg.br/tede/bitstreams/76ab4808-3ecd-4193-8656-975c856b18a8/download
http://repositorio.bc.ufg.br/tede/bitstreams/83c3a964-00aa-4fc1-846d-1fa26c5f8d74/download
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
deee1eb4542247f23f338f831c4418b1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv grt.bc@ufg.br
_version_ 1846536596377042944