Predição de diâmetros e cálculo de volume de clones de eucalipto: uma abordagem com redes multi layer perceptron e long-short term memory
| Ano de defesa: | 2019 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | , , |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| dARK ID: | ark:/38995/00130000006hv |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Goiás
|
| Programa de Pós-Graduação: |
Programa de Pós-graduação em Ciência da Computação (INF)
|
| Departamento: |
Instituto de Informática - INF (RG)
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | http://repositorio.bc.ufg.br/tede/handle/tede/10005 |
Resumo: | Effective management of forest resources is of great importance to the success of a forest enterprise. Obtaining accurate information on planted forests is essential for effective forest activity planning. In this sense, the forest inventory is the procedure used to obtain qualitative and quantitative information from a given region. Through inventory it, is possible, for example, to quantify trees, identify species of a settlement and obtain the total volume to be explored. The total volume is one of the most important elements for the exploration of a given area. Companies use information obtained from forest management inventory to establish the number of trees to be removed without disrupting the natural cycle of forests. For the forest enterprise, it is desirable to obtain the necessary information from a stand without raising costs. Thus, statistical methods provide a way to exploit this information without raising the cost by delivering a near-real result. Several works in the literature apply artificial neural networks in several areas of the forest sector, the results obtained by them have been quite promising for problems of classification and prediction of forest resources. In this context, the present work presents a study on the development of models built through neural networks of different architectures, especially the \ textit {Multi layer Perceptron} and \ textit {Long-Short Term Memory} networks, besides the statistical analysis of the models. For diameter prediction and volume calculation of eucalyptus clones. The results achieved by the models were compared with the values obtained by rigorous cubing and by the Schumacher and Hall model (log). The models built by Long-Short Term Memory networks showed good generalization capacity and were superior for estimating diameters and calculating eucalyptus volume in other sites not available during the training phase. In addition to presenting results quite close to those obtained through rigorous cubing. In general, the results were quite satisfactory concerning the statistical methods present in the literature. |
| id |
UFG-2_f9d5678def2f969b1270ee252dfaaa98 |
|---|---|
| oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/10005 |
| network_acronym_str |
UFG-2 |
| network_name_str |
Repositório Institucional da UFG |
| repository_id_str |
|
| spelling |
Soares, Fabrízzio Alphonsus Alves de Melo Nuneshttp://lattes.cnpq.br/7206645857721831Soares, Fabrizzio Alphonsus Alves de Melo NunesFernandes, Deborah Silva AlvesCabacinha, Christian Diashttp://lattes.cnpq.br/7647778556346999Rodrigues, Welington Galvão2019-09-11T15:27:00Z2019-08-15RODRIGUES, W. G. Predição de diâmetros e cálculo de volume de clones de eucalipto: uma abordagem com redes multi layer perceptron e long-short term memory. 2019. 93 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2019.http://repositorio.bc.ufg.br/tede/handle/tede/10005ark:/38995/00130000006hvEffective management of forest resources is of great importance to the success of a forest enterprise. Obtaining accurate information on planted forests is essential for effective forest activity planning. In this sense, the forest inventory is the procedure used to obtain qualitative and quantitative information from a given region. Through inventory it, is possible, for example, to quantify trees, identify species of a settlement and obtain the total volume to be explored. The total volume is one of the most important elements for the exploration of a given area. Companies use information obtained from forest management inventory to establish the number of trees to be removed without disrupting the natural cycle of forests. For the forest enterprise, it is desirable to obtain the necessary information from a stand without raising costs. Thus, statistical methods provide a way to exploit this information without raising the cost by delivering a near-real result. Several works in the literature apply artificial neural networks in several areas of the forest sector, the results obtained by them have been quite promising for problems of classification and prediction of forest resources. In this context, the present work presents a study on the development of models built through neural networks of different architectures, especially the \ textit {Multi layer Perceptron} and \ textit {Long-Short Term Memory} networks, besides the statistical analysis of the models. For diameter prediction and volume calculation of eucalyptus clones. The results achieved by the models were compared with the values obtained by rigorous cubing and by the Schumacher and Hall model (log). The models built by Long-Short Term Memory networks showed good generalization capacity and were superior for estimating diameters and calculating eucalyptus volume in other sites not available during the training phase. In addition to presenting results quite close to those obtained through rigorous cubing. In general, the results were quite satisfactory concerning the statistical methods present in the literature.O gerenciamento efetivo dos recursos florestais é de grande importância para o sucesso de um empreendimento florestal. Obter informações precisas de florestas plantadas é essencial para o planejamento eficaz da atividade florestal. Neste sentido, o inventário florestal é o procedimento utilizado para obter as informações qualitativas e quantitativas de uma determinada região. Através dele é possível, por exemplo, quantificar árvores, identificar as espécies de um povoamento e obter o volume total a ser explorado. O volume constitui um dos elementos mais importantes para a exploração de uma determinada área. Empresas usam informações obtidas através do inventário para o manejo florestal estabelecendo a quantidade de árvores a serem retiradas sem interromper o ciclo natural das florestas. Para o empreendimento florestal é desejável obter as informações necessárias de um povoamento sem elevar os custos. Assim, os métodos estatísticos apresentam um caminho para explorar essas informações sem elevar o custo entregando um resultado próximo ao real. Vários trabalhos presentes na literatura aplicam redes neurais artificias em diversas áreas do setor florestal, os resultados obtidos por elas mostraram-se bastantes promissores para problemas de classificação e predição de recursos florestais. Neste contexto, o presente trabalho apresenta um estudo no desenvolvimento de modelos construídos através de redes neurais de diferentes arquiteturas, em especial as redes \textit{Multi layer Perceptron} e \textit{LongShort Term Memory}, além da análise estatística dos modelos para predição de diâmetros e cálculo de volume de clones de eucalipto. Os resultados alcançados pelos modelos foram comparados com os valores obtidos através de cubagem rigorosa e pelo modelo de Schumacher e Hall (log). Os modelos construídos pelas redes do tipo \textit{Long-Short Term Memory} apresentaram boa capacidade de generalização e mostraram-se superiores para estimar diâmetros e calcular volume de eucaliptos em demais sítios não disponíveis durante a fase de treinamento. Além de apresentar resultados bastantes próximos aos obtidos através da cubagem rigorosa. De modo geral os resultados mostraram-se bastante satisfatórios em relação aos métodos estatísticos e presentes na literatura.application/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Ciência da Computação (INF)UFGBrasilInstituto de Informática - INF (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessRedes neuraisLSTMInventário florestalNeural networksForest inventoryCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOPredição de diâmetros e cálculo de volume de clones de eucalipto: uma abordagem com redes multi layer perceptron e long-short term memoryPrediction of diameters and volume calculation of eucalyptus clonesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-3303550325223384799600600600-77122667346336447683671711205811204509reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/658fb4cd-cb2f-45d5-8605-38f76694d6dc/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/f0959bc8-2757-4901-9105-4b6a9204b133/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/38864285-6e85-44ed-bceb-cf472187305e/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/76ab4808-3ecd-4193-8656-975c856b18a8/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertação - Welington Galvão Rodrigues - 2019.pdfDissertação - Welington Galvão Rodrigues - 2019.pdfapplication/pdf6495429http://repositorio.bc.ufg.br/tede/bitstreams/83c3a964-00aa-4fc1-846d-1fa26c5f8d74/downloaddeee1eb4542247f23f338f831c4418b1MD55tede/100052019-09-11 12:27:00.402http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/10005http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttps://repositorio.bc.ufg.br/tedeserver/oai/requestgrt.bc@ufg.bropendoar:oai:repositorio.bc.ufg.br:tede/12342019-09-11T15:27Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
| dc.title.eng.fl_str_mv |
Predição de diâmetros e cálculo de volume de clones de eucalipto: uma abordagem com redes multi layer perceptron e long-short term memory |
| dc.title.alternative.eng.fl_str_mv |
Prediction of diameters and volume calculation of eucalyptus clones |
| title |
Predição de diâmetros e cálculo de volume de clones de eucalipto: uma abordagem com redes multi layer perceptron e long-short term memory |
| spellingShingle |
Predição de diâmetros e cálculo de volume de clones de eucalipto: uma abordagem com redes multi layer perceptron e long-short term memory Rodrigues, Welington Galvão Redes neurais LSTM Inventário florestal Neural networks Forest inventory CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| title_short |
Predição de diâmetros e cálculo de volume de clones de eucalipto: uma abordagem com redes multi layer perceptron e long-short term memory |
| title_full |
Predição de diâmetros e cálculo de volume de clones de eucalipto: uma abordagem com redes multi layer perceptron e long-short term memory |
| title_fullStr |
Predição de diâmetros e cálculo de volume de clones de eucalipto: uma abordagem com redes multi layer perceptron e long-short term memory |
| title_full_unstemmed |
Predição de diâmetros e cálculo de volume de clones de eucalipto: uma abordagem com redes multi layer perceptron e long-short term memory |
| title_sort |
Predição de diâmetros e cálculo de volume de clones de eucalipto: uma abordagem com redes multi layer perceptron e long-short term memory |
| author |
Rodrigues, Welington Galvão |
| author_facet |
Rodrigues, Welington Galvão |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
Soares, Fabrízzio Alphonsus Alves de Melo Nunes |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/7206645857721831 |
| dc.contributor.referee1.fl_str_mv |
Soares, Fabrizzio Alphonsus Alves de Melo Nunes |
| dc.contributor.referee2.fl_str_mv |
Fernandes, Deborah Silva Alves |
| dc.contributor.referee3.fl_str_mv |
Cabacinha, Christian Dias |
| dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/7647778556346999 |
| dc.contributor.author.fl_str_mv |
Rodrigues, Welington Galvão |
| contributor_str_mv |
Soares, Fabrízzio Alphonsus Alves de Melo Nunes Soares, Fabrizzio Alphonsus Alves de Melo Nunes Fernandes, Deborah Silva Alves Cabacinha, Christian Dias |
| dc.subject.por.fl_str_mv |
Redes neurais LSTM Inventário florestal |
| topic |
Redes neurais LSTM Inventário florestal Neural networks Forest inventory CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| dc.subject.eng.fl_str_mv |
Neural networks Forest inventory |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| description |
Effective management of forest resources is of great importance to the success of a forest enterprise. Obtaining accurate information on planted forests is essential for effective forest activity planning. In this sense, the forest inventory is the procedure used to obtain qualitative and quantitative information from a given region. Through inventory it, is possible, for example, to quantify trees, identify species of a settlement and obtain the total volume to be explored. The total volume is one of the most important elements for the exploration of a given area. Companies use information obtained from forest management inventory to establish the number of trees to be removed without disrupting the natural cycle of forests. For the forest enterprise, it is desirable to obtain the necessary information from a stand without raising costs. Thus, statistical methods provide a way to exploit this information without raising the cost by delivering a near-real result. Several works in the literature apply artificial neural networks in several areas of the forest sector, the results obtained by them have been quite promising for problems of classification and prediction of forest resources. In this context, the present work presents a study on the development of models built through neural networks of different architectures, especially the \ textit {Multi layer Perceptron} and \ textit {Long-Short Term Memory} networks, besides the statistical analysis of the models. For diameter prediction and volume calculation of eucalyptus clones. The results achieved by the models were compared with the values obtained by rigorous cubing and by the Schumacher and Hall model (log). The models built by Long-Short Term Memory networks showed good generalization capacity and were superior for estimating diameters and calculating eucalyptus volume in other sites not available during the training phase. In addition to presenting results quite close to those obtained through rigorous cubing. In general, the results were quite satisfactory concerning the statistical methods present in the literature. |
| publishDate |
2019 |
| dc.date.accessioned.fl_str_mv |
2019-09-11T15:27:00Z |
| dc.date.issued.fl_str_mv |
2019-08-15 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
RODRIGUES, W. G. Predição de diâmetros e cálculo de volume de clones de eucalipto: uma abordagem com redes multi layer perceptron e long-short term memory. 2019. 93 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2019. |
| dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/10005 |
| dc.identifier.dark.fl_str_mv |
ark:/38995/00130000006hv |
| identifier_str_mv |
RODRIGUES, W. G. Predição de diâmetros e cálculo de volume de clones de eucalipto: uma abordagem com redes multi layer perceptron e long-short term memory. 2019. 93 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2019. ark:/38995/00130000006hv |
| url |
http://repositorio.bc.ufg.br/tede/handle/tede/10005 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.program.fl_str_mv |
-3303550325223384799 |
| dc.relation.confidence.fl_str_mv |
600 600 600 |
| dc.relation.department.fl_str_mv |
-7712266734633644768 |
| dc.relation.cnpq.fl_str_mv |
3671711205811204509 |
| dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
| dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Ciência da Computação (INF) |
| dc.publisher.initials.fl_str_mv |
UFG |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
Instituto de Informática - INF (RG) |
| publisher.none.fl_str_mv |
Universidade Federal de Goiás |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
| instname_str |
Universidade Federal de Goiás (UFG) |
| instacron_str |
UFG |
| institution |
UFG |
| reponame_str |
Repositório Institucional da UFG |
| collection |
Repositório Institucional da UFG |
| bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/658fb4cd-cb2f-45d5-8605-38f76694d6dc/download http://repositorio.bc.ufg.br/tede/bitstreams/f0959bc8-2757-4901-9105-4b6a9204b133/download http://repositorio.bc.ufg.br/tede/bitstreams/38864285-6e85-44ed-bceb-cf472187305e/download http://repositorio.bc.ufg.br/tede/bitstreams/76ab4808-3ecd-4193-8656-975c856b18a8/download http://repositorio.bc.ufg.br/tede/bitstreams/83c3a964-00aa-4fc1-846d-1fa26c5f8d74/download |
| bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e deee1eb4542247f23f338f831c4418b1 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
| repository.mail.fl_str_mv |
grt.bc@ufg.br |
| _version_ |
1846536596377042944 |