Mapeamento de culturas anuais no estado de Goiás com séries temporais de imagens Modis

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Oliveira, Bernard Silva de lattes
Orientador(a): Ferreira, Manuel Eduardo lattes
Banca de defesa: Ferreira, Manuel Eduardo, Clementino, Nilson Ferreira, Coutinho, Alexandre Camargo
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
dARK ID: ark:/38995/00130000049ht
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Geografia (IESA)
Departamento: Instituto de Estudos Socioambientais - IESA (RG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/12376
Resumo: Agricultural expansion in Brazil is still quite intense, especially in the Midwest region, especially in the states of Mato Grosso and Goiás, both with a large representation of the Cerrado biome. The main agricultural crops, with emphasis on the international market, are soybeans, corn and sugarcane. Thus, it becomes absolutely necessary the development and application of new techniques based on remote sensing to map areas of crops at a regional scale, as quickly and accurately as possible. Using data from MODIS (Moderate Resolution Imaging Spectroradiometer) aboard the Terra platform, such land use in the country can be systematically monitored, especially in grazing areas, forests, savanna and agriculture. In this context, the main objective of this research was to improve techniques for mapping the soybean and corn in the middle region of Goiás (Centro Goiano macro-region), with the use of Vegetation Index images (EVI) obtained from MODIS time-series between 2002 and 2010. The EVI images, despite the recognized high quality, contain some atmospheric interference, inherent to the process, as the presence of clouds; in this sense, a set of methods to minimize such noise were applied to datasets. Overall, among the methodological procedures of this research, were adopted (1) the application of pixel reliability band, in order to remove pixels contaminated by clouds, and (2) the use of estimates of contaminated pixels (excluded from each image), and (3) the application of interpolation filters to each scene, to obtain continuous temporal-spectral profiles for the land use class analyzed over the time. Due to digital processing, it was possible to characterize the phenological response for agriculture, followed by its classification through a decision-tree method in IDL language, with the aid of phenological metrics and statistical analysis of the pixel response. The results demonstrate the efficiency of the method for the temporal monitoring of agricultural areas in the Cerrado (Goiás), although an omission error for regions with small areas of planting occurred due to the pixel size of MODIS (6.25 hectares, favoring a spectral mixture). In areas with large plantings of soybeans, was achieved an accuracy of 78%, while corn remained below 48%, due mainly to the few areas intended for this crop in Goiás. As part of this research, an image processing tool for MODIS/EVI dataset (developed for ENVI/IDL) was created and put available for agriculture mapping in the Cerrado biome.
id UFG-2_ffe4ecf30d9261d6b03415fb13f9b9e2
oai_identifier_str oai:repositorio.bc.ufg.br:tede/12376
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Ferreira, Manuel Eduardohttp://lattes.cnpq.br/4498594723433539Ferreira, Manuel EduardoClementino, Nilson FerreiraCoutinho, Alexandre Camargohttp://lattes.cnpq.br/8609919820822420Oliveira, Bernard Silva de2022-10-18T12:58:19Z2022-10-18T12:58:19Z2014-09-22OLIVEIRA, B. S. Mapeamento de culturas anuais no estado de Goiás com séries temporais de imagens Modis. 2014. 104 f. Dissertação (Mestrado em Geografia) - Universidade Federal de Goiás, Goiânia, 2014.http://repositorio.bc.ufg.br/tede/handle/tede/12376ark:/38995/00130000049htAgricultural expansion in Brazil is still quite intense, especially in the Midwest region, especially in the states of Mato Grosso and Goiás, both with a large representation of the Cerrado biome. The main agricultural crops, with emphasis on the international market, are soybeans, corn and sugarcane. Thus, it becomes absolutely necessary the development and application of new techniques based on remote sensing to map areas of crops at a regional scale, as quickly and accurately as possible. Using data from MODIS (Moderate Resolution Imaging Spectroradiometer) aboard the Terra platform, such land use in the country can be systematically monitored, especially in grazing areas, forests, savanna and agriculture. In this context, the main objective of this research was to improve techniques for mapping the soybean and corn in the middle region of Goiás (Centro Goiano macro-region), with the use of Vegetation Index images (EVI) obtained from MODIS time-series between 2002 and 2010. The EVI images, despite the recognized high quality, contain some atmospheric interference, inherent to the process, as the presence of clouds; in this sense, a set of methods to minimize such noise were applied to datasets. Overall, among the methodological procedures of this research, were adopted (1) the application of pixel reliability band, in order to remove pixels contaminated by clouds, and (2) the use of estimates of contaminated pixels (excluded from each image), and (3) the application of interpolation filters to each scene, to obtain continuous temporal-spectral profiles for the land use class analyzed over the time. Due to digital processing, it was possible to characterize the phenological response for agriculture, followed by its classification through a decision-tree method in IDL language, with the aid of phenological metrics and statistical analysis of the pixel response. The results demonstrate the efficiency of the method for the temporal monitoring of agricultural areas in the Cerrado (Goiás), although an omission error for regions with small areas of planting occurred due to the pixel size of MODIS (6.25 hectares, favoring a spectral mixture). In areas with large plantings of soybeans, was achieved an accuracy of 78%, while corn remained below 48%, due mainly to the few areas intended for this crop in Goiás. As part of this research, an image processing tool for MODIS/EVI dataset (developed for ENVI/IDL) was created and put available for agriculture mapping in the Cerrado biome.A expansão agrícola no Brasil ainda vem ocorrendo de forma bastante intensa, principalmente no Centro-Oeste, com destaque para os estados do Mato Grosso e Goiás, ambos com uma grande representatividade do bioma Cerrado. As principais culturas agrícolas, com ênfase no mercado internacional, têm sido a soja, o milho e a cana-de- açúcar. Com isso, torna-se absolutamente necessário o desenvolvimento e a aplicação de técnicas baseadas em sensoriamento remoto para mapear as áreas de cultivos em nível regional, de forma rápida e precisa. Por meio dos dados do sensor MODIS (Moderate Resolution Imaging Spectroradiometer), a bordo da plataforma orbital TERRA, tal uso da terra no país pode ser acompanhado de forma sistemática, com destaque para as áreas de pastagem, florestas, cerrado e agricultura. Neste contexto, o objetivo geral desta pesquisa foi o de aprimorar as técnicas para o mapeamento de soja e milho na mesorregião do Centro Goiano, a partir do uso de imagens Índice de Vegetação (EVI) advinda de séries temporais do MODIS, entre 2002 e 2010. As imagens EVI, apesar da elevada qualidade, contêm algumas interferências atmosféricas, inerentes ao processo de aquisição, como a presença de nuvens; neste sentido, um conjunto de métodos para minimizar tais ruídos foi aplicado aos dados desta pesquisa. De forma geral, dentre os procedimentos metodológicos, foram adotadas (1) a aplicação da banda pixel reliability, com o intuito de retirar pixels contaminados por nuvens, (2) uso de estimativas de pixels contaminados (excluídos das imagens), e (3) aplicação de filtro interpolador para preenchimento de vazios em cada cena, com a obtenção de perfis espectro-temporais contínuos e suavizados para cada classe de uso analisada ao longo do tempo. Com este processamento digital, foi possível a caracterização fenológica da agricultura, seguida por uma classificação pelo de método de árvore de decisão desenvolvida na linguagem IDL, com ajuda de métricas fenológicas e análises estatísticas da resposta do pixel ao longo do tempo. Os resultados demonstram a eficiência do método para o acompanhamento temporal de áreas agrícolas no Cerrado, ainda que para regiões com pequenas áreas de plantios ocorra um erro de omissão, devido ao tamanho do pixel do sensor MODIS (6,25 hectares, favorecendo a mistura espectral). Nas áreas com grandes plantios de soja, alcançou-se uma exatidão de 78% da classificação, enquanto que as de milho ficaram abaixo de 48%, devido principalmente às poucas áreas destinadas atualmente para este cultivo em Goiás. Como parte desta pesquisa, uma ferramenta para processamento digital de imagens foi criada e colocada à disposição para análise de dados MODIS/EVI (para ambiente ENVI/IDL), visando o mapeamento de áreas agrícolas no bioma Cerrado.OutroporUniversidade Federal de GoiásPrograma de Pós-graduação em Geografia (IESA)UFGBrasilInstituto de Estudos Socioambientais - IESA (RG)Attribution-NonCommercial-NoDerivatives 4.0 Internationalinfo:eu-repo/semantics/openAccessMODISSéries temporaisAgriculturaProcessamento digital de imagensMétricas fenológicasTime-seriesAgricultureDigital image processingPhenological metricsCIENCIAS HUMANAS::GEOGRAFIA::GEOGRAFIA HUMANA::GEOGRAFIA AGRARIAMapeamento de culturas anuais no estado de Goiás com séries temporais de imagens Modisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis61500500500500246805reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.bc.ufg.br/tede/bitstreams/08605bed-60ce-4ec8-b008-22f4a4e4c101/download8a4605be74aa9ea9d79846c1fba20a33MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.bc.ufg.br/tede/bitstreams/70fc324d-6e8e-4cf7-86b8-10342bb7a293/download4460e5956bc1d1639be9ae6146a50347MD52ORIGINALDissertação - Bernard Silva de Oliveira - 2014.pdfDissertação - Bernard Silva de Oliveira - 2014.pdfapplication/pdf5413887http://repositorio.bc.ufg.br/tede/bitstreams/73f0e589-6f64-41e3-846b-340e1e88f36d/downloadd2328b498219ac74332094631e9c66b1MD53tede/123762022-10-18 09:58:19.703http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accessoai:repositorio.bc.ufg.br:tede/12376http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttps://repositorio.bc.ufg.br/tedeserver/oai/requestgrt.bc@ufg.bropendoar:oai:repositorio.bc.ufg.br:tede/12342022-10-18T12:58:19Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
dc.title.pt_BR.fl_str_mv Mapeamento de culturas anuais no estado de Goiás com séries temporais de imagens Modis
title Mapeamento de culturas anuais no estado de Goiás com séries temporais de imagens Modis
spellingShingle Mapeamento de culturas anuais no estado de Goiás com séries temporais de imagens Modis
Oliveira, Bernard Silva de
MODIS
Séries temporais
Agricultura
Processamento digital de imagens
Métricas fenológicas
Time-series
Agriculture
Digital image processing
Phenological metrics
CIENCIAS HUMANAS::GEOGRAFIA::GEOGRAFIA HUMANA::GEOGRAFIA AGRARIA
title_short Mapeamento de culturas anuais no estado de Goiás com séries temporais de imagens Modis
title_full Mapeamento de culturas anuais no estado de Goiás com séries temporais de imagens Modis
title_fullStr Mapeamento de culturas anuais no estado de Goiás com séries temporais de imagens Modis
title_full_unstemmed Mapeamento de culturas anuais no estado de Goiás com séries temporais de imagens Modis
title_sort Mapeamento de culturas anuais no estado de Goiás com séries temporais de imagens Modis
author Oliveira, Bernard Silva de
author_facet Oliveira, Bernard Silva de
author_role author
dc.contributor.advisor1.fl_str_mv Ferreira, Manuel Eduardo
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4498594723433539
dc.contributor.referee1.fl_str_mv Ferreira, Manuel Eduardo
dc.contributor.referee2.fl_str_mv Clementino, Nilson Ferreira
dc.contributor.referee3.fl_str_mv Coutinho, Alexandre Camargo
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/8609919820822420
dc.contributor.author.fl_str_mv Oliveira, Bernard Silva de
contributor_str_mv Ferreira, Manuel Eduardo
Ferreira, Manuel Eduardo
Clementino, Nilson Ferreira
Coutinho, Alexandre Camargo
dc.subject.por.fl_str_mv MODIS
Séries temporais
Agricultura
Processamento digital de imagens
Métricas fenológicas
topic MODIS
Séries temporais
Agricultura
Processamento digital de imagens
Métricas fenológicas
Time-series
Agriculture
Digital image processing
Phenological metrics
CIENCIAS HUMANAS::GEOGRAFIA::GEOGRAFIA HUMANA::GEOGRAFIA AGRARIA
dc.subject.eng.fl_str_mv Time-series
Agriculture
Digital image processing
Phenological metrics
dc.subject.cnpq.fl_str_mv CIENCIAS HUMANAS::GEOGRAFIA::GEOGRAFIA HUMANA::GEOGRAFIA AGRARIA
description Agricultural expansion in Brazil is still quite intense, especially in the Midwest region, especially in the states of Mato Grosso and Goiás, both with a large representation of the Cerrado biome. The main agricultural crops, with emphasis on the international market, are soybeans, corn and sugarcane. Thus, it becomes absolutely necessary the development and application of new techniques based on remote sensing to map areas of crops at a regional scale, as quickly and accurately as possible. Using data from MODIS (Moderate Resolution Imaging Spectroradiometer) aboard the Terra platform, such land use in the country can be systematically monitored, especially in grazing areas, forests, savanna and agriculture. In this context, the main objective of this research was to improve techniques for mapping the soybean and corn in the middle region of Goiás (Centro Goiano macro-region), with the use of Vegetation Index images (EVI) obtained from MODIS time-series between 2002 and 2010. The EVI images, despite the recognized high quality, contain some atmospheric interference, inherent to the process, as the presence of clouds; in this sense, a set of methods to minimize such noise were applied to datasets. Overall, among the methodological procedures of this research, were adopted (1) the application of pixel reliability band, in order to remove pixels contaminated by clouds, and (2) the use of estimates of contaminated pixels (excluded from each image), and (3) the application of interpolation filters to each scene, to obtain continuous temporal-spectral profiles for the land use class analyzed over the time. Due to digital processing, it was possible to characterize the phenological response for agriculture, followed by its classification through a decision-tree method in IDL language, with the aid of phenological metrics and statistical analysis of the pixel response. The results demonstrate the efficiency of the method for the temporal monitoring of agricultural areas in the Cerrado (Goiás), although an omission error for regions with small areas of planting occurred due to the pixel size of MODIS (6.25 hectares, favoring a spectral mixture). In areas with large plantings of soybeans, was achieved an accuracy of 78%, while corn remained below 48%, due mainly to the few areas intended for this crop in Goiás. As part of this research, an image processing tool for MODIS/EVI dataset (developed for ENVI/IDL) was created and put available for agriculture mapping in the Cerrado biome.
publishDate 2014
dc.date.issued.fl_str_mv 2014-09-22
dc.date.accessioned.fl_str_mv 2022-10-18T12:58:19Z
dc.date.available.fl_str_mv 2022-10-18T12:58:19Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv OLIVEIRA, B. S. Mapeamento de culturas anuais no estado de Goiás com séries temporais de imagens Modis. 2014. 104 f. Dissertação (Mestrado em Geografia) - Universidade Federal de Goiás, Goiânia, 2014.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/12376
dc.identifier.dark.fl_str_mv ark:/38995/00130000049ht
identifier_str_mv OLIVEIRA, B. S. Mapeamento de culturas anuais no estado de Goiás com séries temporais de imagens Modis. 2014. 104 f. Dissertação (Mestrado em Geografia) - Universidade Federal de Goiás, Goiânia, 2014.
ark:/38995/00130000049ht
url http://repositorio.bc.ufg.br/tede/handle/tede/12376
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 61
dc.relation.confidence.fl_str_mv 500
500
500
500
dc.relation.department.fl_str_mv 24
dc.relation.cnpq.fl_str_mv 680
dc.relation.sponsorship.fl_str_mv 5
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Geografia (IESA)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Estudos Socioambientais - IESA (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/08605bed-60ce-4ec8-b008-22f4a4e4c101/download
http://repositorio.bc.ufg.br/tede/bitstreams/70fc324d-6e8e-4cf7-86b8-10342bb7a293/download
http://repositorio.bc.ufg.br/tede/bitstreams/73f0e589-6f64-41e3-846b-340e1e88f36d/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
4460e5956bc1d1639be9ae6146a50347
d2328b498219ac74332094631e9c66b1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv grt.bc@ufg.br
_version_ 1846536645533237248