A mediator for multiple trackers in long-term scenario

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Maia, Helena de Almeida lattes
Orientador(a): Vieira, Marcelo Bernardes lattes
Banca de defesa: Silva, Rodrigo Luis de Souza da lattes, Pedrini, Hélio lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Programa de Pós-graduação em Ciência da Computação
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/4841
Resumo: Nos últimos anos, o rastreador TLD (Tracking-Learning-Detection) se destacou por combinar um método de rastreamento através do movimento aparente e um método de detecção para o problema de rastreamento de objetos em vídeos. O detector identifica o objeto pelas aparências supostamente confirmadas. O rastreador insere novas aparências no modelo do detector estimando o movimento aparente. A integração das duas respostas é realizada através da mesma métrica de similaridade utilizada pelo detector que pode levar a uma decisão enviesada. Neste trabalho, é proposto um framework para métodos baseados em múltiplos rastreadores onde o componente responsável pela integração das respostas é independente dos rastreadores. Este componente é denominado mediador. Seguindo este framework, um novo método é proposto para integrar o rastreador por movimento e o detector do rastreador TLD pela combinação das suas estimativas. Os resultados mostram que, quando a integração é independente das métricas de ambos os rastreadores, a performance é melhorada para objetos com significativas variações de aparência durante o vídeo.
id UFJF_494a39fb6c85e4aa3339cf49196a6fa2
oai_identifier_str oai:hermes.cpd.ufjf.br:ufjf/4841
network_acronym_str UFJF
network_name_str Repositório Institucional da UFJF
repository_id_str
spelling Vieira, Marcelo Bernardeshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4763472P6Silva, Rodrigo Luis de Souza dahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4769102Z1Pedrini, Héliohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4795613T2http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4407879A9Maia, Helena de Almeida2017-06-07T14:56:50Z2017-06-072017-06-07T14:56:50Z2016-03-18https://repositorio.ufjf.br/jspui/handle/ufjf/4841Nos últimos anos, o rastreador TLD (Tracking-Learning-Detection) se destacou por combinar um método de rastreamento através do movimento aparente e um método de detecção para o problema de rastreamento de objetos em vídeos. O detector identifica o objeto pelas aparências supostamente confirmadas. O rastreador insere novas aparências no modelo do detector estimando o movimento aparente. A integração das duas respostas é realizada através da mesma métrica de similaridade utilizada pelo detector que pode levar a uma decisão enviesada. Neste trabalho, é proposto um framework para métodos baseados em múltiplos rastreadores onde o componente responsável pela integração das respostas é independente dos rastreadores. Este componente é denominado mediador. Seguindo este framework, um novo método é proposto para integrar o rastreador por movimento e o detector do rastreador TLD pela combinação das suas estimativas. Os resultados mostram que, quando a integração é independente das métricas de ambos os rastreadores, a performance é melhorada para objetos com significativas variações de aparência durante o vídeo.On the problem of tracking objects in videos, a recent and distinguished approach combining tracking and detection methods is the TLD (Tracking-Learning-Detection) framework. The detector identifies the object by its supposedly confirmed appearances. The tracker inserts new appearances into the model using apparent motion. Their outcomes are integrated by using the same similarity metric of the detector which, in our point of view, leads to biased results. In our work, we propose a framework for generic multitracker methods where the component responsible for the integration is independent from the trackers. We call this component as mediator. Using this framework, we propose a new method for integrating the motion tracker and detector from TLD by combining their estimations. Our results show that when the integration is independent of both tracker/detector metrics, the overall tracking is improved for objects with high appearance variations throughout the video.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorporUniversidade Federal de Juiz de Fora (UFJF)Programa de Pós-graduação em Ciência da ComputaçãoUFJFBrasilICE – Instituto de Ciências ExatasCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAORastreamento por templateTracking-learning-detectionAprendizado semisupervisionadoTemplate trackingTracking-Learning-DetectionSemisupervised learningA mediator for multiple trackers in long-term scenarioinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFJFinstname:Universidade Federal de Juiz de Fora (UFJF)instacron:UFJFTEXThelenadealmeidamaia.pdf.txthelenadealmeidamaia.pdf.txtExtracted texttext/plain112900https://repositorio.ufjf.br/jspui/bitstream/ufjf/4841/3/helenadealmeidamaia.pdf.txtafd0874b8c36093334e58b0fb82916ffMD53THUMBNAILhelenadealmeidamaia.pdf.jpghelenadealmeidamaia.pdf.jpgGenerated Thumbnailimage/jpeg1193https://repositorio.ufjf.br/jspui/bitstream/ufjf/4841/4/helenadealmeidamaia.pdf.jpgf50bcc7d4c2f555e23e4be199e71015dMD54ORIGINALhelenadealmeidamaia.pdfhelenadealmeidamaia.pdfapplication/pdf3132814https://repositorio.ufjf.br/jspui/bitstream/ufjf/4841/1/helenadealmeidamaia.pdfd46a470b453ec6ba11362abaeac3a42cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82197https://repositorio.ufjf.br/jspui/bitstream/ufjf/4841/2/license.txt000e18a5aee6ca21bb5811ddf55fc37bMD52ufjf/48412019-06-16 06:51:02.983oai:hermes.cpd.ufjf.br:ufjf/4841TElDRU7vv71BIERFIERJU1RSSUJVSe+/ve+/vU8gTu+/vU8tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHvv73vv71vIGRlc3RhIGxpY2Vu77+9YSwgdm9j77+9IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l077+9cmlvIApJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIEp1aXogZGUgRm9yYSBvIGRpcmVpdG8gbu+/vW8tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYe+/ve+/vW8gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLvv71uaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIO+/vXVkaW8gb3Ugdu+/vWRlby4KClZvY++/vSBjb25jb3JkYSBxdWUgbyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgSnVpeiBkZSBGb3JhIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXvv71kbywgdHJhbnNwb3IgYSBzdWEgcHVibGljYe+/ve+/vW8gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZh77+977+9by4gVm9j77+9IHRhbWLvv71tIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBKdWl6IGRlIEZvcmEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY++/vXBpYSBkZSBzdWEgcHVibGljYe+/ve+/vW8gcGFyYSBmaW5zIGRlIHNlZ3VyYW7vv71hLCBiYWNrLXVwIGUgcHJlc2VydmHvv73vv71vLiBWb2Pvv70gZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYe+/ve+/vW8g77+9IG9yaWdpbmFsIGUgcXVlIHZvY++/vSB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbu+/vWEuIFZvY++/vSB0YW1i77+9bSBkZWNsYXJhIHF1ZSBvIGRlcO+/vXNpdG8gZGEgc3VhIHB1YmxpY2Hvv73vv71vIG7vv71vLCBxdWUgc2VqYSBkZSBzZXUgY29uaGVjaW1lbnRvLCBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5nde+/vW0uCgpDYXNvIGEgc3VhIHB1YmxpY2Hvv73vv71vIGNvbnRlbmhhIG1hdGVyaWFsIHF1ZSB2b2Pvv70gbu+/vW8gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9j77+9IGRlY2xhcmEgcXVlIG9idGV2ZSBhIHBlcm1pc3Pvv71vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdO+/vXJpbyBJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIEp1aXogZGUgRm9yYSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7vv71hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Tvv70gY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250Ze+/vWRvIGRhIHB1YmxpY2Hvv73vv71vIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0Hvv73vv71PIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ++/vU5JTyBPVSBBUE9JTyBERSBVTUEgQUfvv71OQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0Pvv70gREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklT77+9TyBDT01PIFRBTULvv71NIEFTIERFTUFJUyBPQlJJR0Hvv73vv71FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKTyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgSnVpeiBkZSBGb3JhIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHB1YmxpY2Hvv73vv71vLCBlIG7vv71vIGZhcu+/vSBxdWFscXVlciBhbHRlcmHvv73vv71vLCBhbO+/vW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbu+/vWEuCg==Repositório InstitucionalPUBhttps://repositorio.ufjf.br/oai/requestopendoar:2019-06-16T09:51:02Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)false
dc.title.pt_BR.fl_str_mv A mediator for multiple trackers in long-term scenario
title A mediator for multiple trackers in long-term scenario
spellingShingle A mediator for multiple trackers in long-term scenario
Maia, Helena de Almeida
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Rastreamento por template
Tracking-learning-detection
Aprendizado semisupervisionado
Template tracking
Tracking-Learning-Detection
Semisupervised learning
title_short A mediator for multiple trackers in long-term scenario
title_full A mediator for multiple trackers in long-term scenario
title_fullStr A mediator for multiple trackers in long-term scenario
title_full_unstemmed A mediator for multiple trackers in long-term scenario
title_sort A mediator for multiple trackers in long-term scenario
author Maia, Helena de Almeida
author_facet Maia, Helena de Almeida
author_role author
dc.contributor.advisor1.fl_str_mv Vieira, Marcelo Bernardes
dc.contributor.advisor1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4763472P6
dc.contributor.referee1.fl_str_mv Silva, Rodrigo Luis de Souza da
dc.contributor.referee1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4769102Z1
dc.contributor.referee2.fl_str_mv Pedrini, Hélio
dc.contributor.referee2Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4795613T2
dc.contributor.authorLattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4407879A9
dc.contributor.author.fl_str_mv Maia, Helena de Almeida
contributor_str_mv Vieira, Marcelo Bernardes
Silva, Rodrigo Luis de Souza da
Pedrini, Hélio
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
topic CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Rastreamento por template
Tracking-learning-detection
Aprendizado semisupervisionado
Template tracking
Tracking-Learning-Detection
Semisupervised learning
dc.subject.por.fl_str_mv Rastreamento por template
Tracking-learning-detection
Aprendizado semisupervisionado
Template tracking
Tracking-Learning-Detection
Semisupervised learning
description Nos últimos anos, o rastreador TLD (Tracking-Learning-Detection) se destacou por combinar um método de rastreamento através do movimento aparente e um método de detecção para o problema de rastreamento de objetos em vídeos. O detector identifica o objeto pelas aparências supostamente confirmadas. O rastreador insere novas aparências no modelo do detector estimando o movimento aparente. A integração das duas respostas é realizada através da mesma métrica de similaridade utilizada pelo detector que pode levar a uma decisão enviesada. Neste trabalho, é proposto um framework para métodos baseados em múltiplos rastreadores onde o componente responsável pela integração das respostas é independente dos rastreadores. Este componente é denominado mediador. Seguindo este framework, um novo método é proposto para integrar o rastreador por movimento e o detector do rastreador TLD pela combinação das suas estimativas. Os resultados mostram que, quando a integração é independente das métricas de ambos os rastreadores, a performance é melhorada para objetos com significativas variações de aparência durante o vídeo.
publishDate 2016
dc.date.issued.fl_str_mv 2016-03-18
dc.date.accessioned.fl_str_mv 2017-06-07T14:56:50Z
dc.date.available.fl_str_mv 2017-06-07
2017-06-07T14:56:50Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufjf.br/jspui/handle/ufjf/4841
url https://repositorio.ufjf.br/jspui/handle/ufjf/4841
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Juiz de Fora (UFJF)
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Ciência da Computação
dc.publisher.initials.fl_str_mv UFJF
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv ICE – Instituto de Ciências Exatas
publisher.none.fl_str_mv Universidade Federal de Juiz de Fora (UFJF)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFJF
instname:Universidade Federal de Juiz de Fora (UFJF)
instacron:UFJF
instname_str Universidade Federal de Juiz de Fora (UFJF)
instacron_str UFJF
institution UFJF
reponame_str Repositório Institucional da UFJF
collection Repositório Institucional da UFJF
bitstream.url.fl_str_mv https://repositorio.ufjf.br/jspui/bitstream/ufjf/4841/3/helenadealmeidamaia.pdf.txt
https://repositorio.ufjf.br/jspui/bitstream/ufjf/4841/4/helenadealmeidamaia.pdf.jpg
https://repositorio.ufjf.br/jspui/bitstream/ufjf/4841/1/helenadealmeidamaia.pdf
https://repositorio.ufjf.br/jspui/bitstream/ufjf/4841/2/license.txt
bitstream.checksum.fl_str_mv afd0874b8c36093334e58b0fb82916ff
f50bcc7d4c2f555e23e4be199e71015d
d46a470b453ec6ba11362abaeac3a42c
000e18a5aee6ca21bb5811ddf55fc37b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)
repository.mail.fl_str_mv
_version_ 1833922389908389888