Análise de abordagens automáticas de anotação semântica para textos ruidosos e seus impactos na similaridade entre vídeos
| Ano de defesa: | 2017 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | , |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
| Programa de Pós-Graduação: |
Programa de Pós-graduação em Ciência da Computação
|
| Departamento: |
ICE – Instituto de Ciências Exatas
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.ufjf.br/jspui/handle/ufjf/6473 |
Resumo: | Com o acúmulo de informações digitais armazenadas ao longo do tempo, alguns esforços precisam ser aplicados para facilitar a busca e indexação de conteúdos. Recursos como vídeos e áudios, por sua vez, são mais difíceis de serem tratados por mecanismos de busca. A anotação de vídeos é uma forma considerável de resumo do vídeo, busca e classificação. A parcela de vídeos que possui anotações atribuídas pelo próprio autor na maioria das vezes é muito pequena e pouco significativa, e anotar vídeos manualmente é bastante trabalhoso quando trata-se de bases legadas. Por esse motivo, automatizar esse processo tem sido desejado no campo da Recuperação de Informação. Em repositórios de videoaulas, onde a maior parte da informação se concentra na fala do professor, esse processo pode ser realizado através de anotações automáticas de transcritos gerados por sistemas de Reconhecimento Automático de Fala. Contudo, essa técnica produz textos ruidosos, dificultando a tarefa de anotação semântica automática. Entre muitas técnicas de Processamento de Linguagem de Natural utilizadas para anotação, não é trivial a escolha da técnica mais adequada a um determinado cenário, principalmente quando trata-se de anotar textos com ruídos. Essa pesquisa propõe analisar um conjunto de diferentes técnicas utilizadas para anotação automática e verificar o seu impacto em um mesmo cenário, o cenário de similaridade entre vídeos. |
| id |
UFJF_63a641fd35bed2871aade2917b8bdccd |
|---|---|
| oai_identifier_str |
oai:hermes.cpd.ufjf.br:ufjf/6473 |
| network_acronym_str |
UFJF |
| network_name_str |
Repositório Institucional da UFJF |
| repository_id_str |
|
| spelling |
Barrére, Eduardohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4792105U4Souza, Jairo Francisco dehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4771297H6Moreno, Marcelo Ferreirahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4760230A7Santos, Celso Alberto Saibelhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4728974A8http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4833279H8Dias, Laura Lima2018-03-21T19:26:08Z2018-10-012018-03-21T19:26:08Z2017-08-31https://repositorio.ufjf.br/jspui/handle/ufjf/6473Com o acúmulo de informações digitais armazenadas ao longo do tempo, alguns esforços precisam ser aplicados para facilitar a busca e indexação de conteúdos. Recursos como vídeos e áudios, por sua vez, são mais difíceis de serem tratados por mecanismos de busca. A anotação de vídeos é uma forma considerável de resumo do vídeo, busca e classificação. A parcela de vídeos que possui anotações atribuídas pelo próprio autor na maioria das vezes é muito pequena e pouco significativa, e anotar vídeos manualmente é bastante trabalhoso quando trata-se de bases legadas. Por esse motivo, automatizar esse processo tem sido desejado no campo da Recuperação de Informação. Em repositórios de videoaulas, onde a maior parte da informação se concentra na fala do professor, esse processo pode ser realizado através de anotações automáticas de transcritos gerados por sistemas de Reconhecimento Automático de Fala. Contudo, essa técnica produz textos ruidosos, dificultando a tarefa de anotação semântica automática. Entre muitas técnicas de Processamento de Linguagem de Natural utilizadas para anotação, não é trivial a escolha da técnica mais adequada a um determinado cenário, principalmente quando trata-se de anotar textos com ruídos. Essa pesquisa propõe analisar um conjunto de diferentes técnicas utilizadas para anotação automática e verificar o seu impacto em um mesmo cenário, o cenário de similaridade entre vídeos.With the accumulation of digital information stored over time, some efforts need to be applied to facilitate search and indexing of content. Resources such as videos and audios, in turn, are more difficult to handle with by search engines. Video annotation is a considerable form of video summary, search and classification. The share of videos that have annotations attributed by the author most often is very small and not very significant, and annotating videos manually is very laborious when dealing with legacy bases. For this reason, automating this process has been desired in the field of Information Retrieval. In video lecture repositories, where most of the information is focused on the teacher’s speech, this process can be performed through automatic annotations of transcripts gene-rated by Automatic Speech Recognition systems. However, this technique produces noisy texts, making the task of automatic semantic annotation difficult. Among many Natural Language Processing techniques used for annotation, it is not trivial to choose the most appropriate technique for a given scenario, especially when writing annotated texts. This research proposes to analyze a set of different techniques used for automatic annotation and verify their impact in the same scenario, the scenario of similarity between videos.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorporUniversidade Federal de Juiz de Fora (UFJF)Programa de Pós-graduação em Ciência da ComputaçãoUFJFBrasilICE – Instituto de Ciências ExatasCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAORecuperação de informaçãoRepositório de videosCategorização de texto ruidosoProcessamento de linguagem naturalInformation retrievalVideo repositoryNoisy text categorizationNatural language processingAnálise de abordagens automáticas de anotação semântica para textos ruidosos e seus impactos na similaridade entre vídeosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFJFinstname:Universidade Federal de Juiz de Fora (UFJF)instacron:UFJFTHUMBNAILlauralimadias.pdf.jpglauralimadias.pdf.jpgGenerated Thumbnailimage/jpeg1262https://repositorio.ufjf.br/jspui/bitstream/ufjf/6473/4/lauralimadias.pdf.jpg18a4c2f1f6a77f88d199dab9e6c30377MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82197https://repositorio.ufjf.br/jspui/bitstream/ufjf/6473/1/license.txt000e18a5aee6ca21bb5811ddf55fc37bMD51ORIGINALlauralimadias.pdflauralimadias.pdfapplication/pdf665383https://repositorio.ufjf.br/jspui/bitstream/ufjf/6473/2/lauralimadias.pdfb3e5ba056b9b605249afd68f92e98badMD52TEXTlauralimadias.pdf.txtlauralimadias.pdf.txtExtracted texttext/plain142402https://repositorio.ufjf.br/jspui/bitstream/ufjf/6473/3/lauralimadias.pdf.txt0659a495e7098d3d303496d5f8ee93eaMD53ufjf/64732019-06-16 09:11:29.53oai:hermes.cpd.ufjf.br:ufjf/6473TElDRU7vv71BIERFIERJU1RSSUJVSe+/ve+/vU8gTu+/vU8tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHvv73vv71vIGRlc3RhIGxpY2Vu77+9YSwgdm9j77+9IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l077+9cmlvIApJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIEp1aXogZGUgRm9yYSBvIGRpcmVpdG8gbu+/vW8tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYe+/ve+/vW8gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLvv71uaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIO+/vXVkaW8gb3Ugdu+/vWRlby4KClZvY++/vSBjb25jb3JkYSBxdWUgbyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgSnVpeiBkZSBGb3JhIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXvv71kbywgdHJhbnNwb3IgYSBzdWEgcHVibGljYe+/ve+/vW8gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZh77+977+9by4gVm9j77+9IHRhbWLvv71tIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBKdWl6IGRlIEZvcmEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY++/vXBpYSBkZSBzdWEgcHVibGljYe+/ve+/vW8gcGFyYSBmaW5zIGRlIHNlZ3VyYW7vv71hLCBiYWNrLXVwIGUgcHJlc2VydmHvv73vv71vLiBWb2Pvv70gZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYe+/ve+/vW8g77+9IG9yaWdpbmFsIGUgcXVlIHZvY++/vSB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbu+/vWEuIFZvY++/vSB0YW1i77+9bSBkZWNsYXJhIHF1ZSBvIGRlcO+/vXNpdG8gZGEgc3VhIHB1YmxpY2Hvv73vv71vIG7vv71vLCBxdWUgc2VqYSBkZSBzZXUgY29uaGVjaW1lbnRvLCBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5nde+/vW0uCgpDYXNvIGEgc3VhIHB1YmxpY2Hvv73vv71vIGNvbnRlbmhhIG1hdGVyaWFsIHF1ZSB2b2Pvv70gbu+/vW8gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9j77+9IGRlY2xhcmEgcXVlIG9idGV2ZSBhIHBlcm1pc3Pvv71vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdO+/vXJpbyBJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIEp1aXogZGUgRm9yYSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7vv71hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Tvv70gY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250Ze+/vWRvIGRhIHB1YmxpY2Hvv73vv71vIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0Hvv73vv71PIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ++/vU5JTyBPVSBBUE9JTyBERSBVTUEgQUfvv71OQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0Pvv70gREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklT77+9TyBDT01PIFRBTULvv71NIEFTIERFTUFJUyBPQlJJR0Hvv73vv71FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKTyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgSnVpeiBkZSBGb3JhIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHB1YmxpY2Hvv73vv71vLCBlIG7vv71vIGZhcu+/vSBxdWFscXVlciBhbHRlcmHvv73vv71vLCBhbO+/vW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbu+/vWEuCg==Repositório InstitucionalPUBhttps://repositorio.ufjf.br/oai/requestopendoar:2019-06-16T12:11:29Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)false |
| dc.title.pt_BR.fl_str_mv |
Análise de abordagens automáticas de anotação semântica para textos ruidosos e seus impactos na similaridade entre vídeos |
| title |
Análise de abordagens automáticas de anotação semântica para textos ruidosos e seus impactos na similaridade entre vídeos |
| spellingShingle |
Análise de abordagens automáticas de anotação semântica para textos ruidosos e seus impactos na similaridade entre vídeos Dias, Laura Lima CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Recuperação de informação Repositório de videos Categorização de texto ruidoso Processamento de linguagem natural Information retrieval Video repository Noisy text categorization Natural language processing |
| title_short |
Análise de abordagens automáticas de anotação semântica para textos ruidosos e seus impactos na similaridade entre vídeos |
| title_full |
Análise de abordagens automáticas de anotação semântica para textos ruidosos e seus impactos na similaridade entre vídeos |
| title_fullStr |
Análise de abordagens automáticas de anotação semântica para textos ruidosos e seus impactos na similaridade entre vídeos |
| title_full_unstemmed |
Análise de abordagens automáticas de anotação semântica para textos ruidosos e seus impactos na similaridade entre vídeos |
| title_sort |
Análise de abordagens automáticas de anotação semântica para textos ruidosos e seus impactos na similaridade entre vídeos |
| author |
Dias, Laura Lima |
| author_facet |
Dias, Laura Lima |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
Barrére, Eduardo |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4792105U4 |
| dc.contributor.advisor-co1.fl_str_mv |
Souza, Jairo Francisco de |
| dc.contributor.advisor-co1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4771297H6 |
| dc.contributor.referee1.fl_str_mv |
Moreno, Marcelo Ferreira |
| dc.contributor.referee1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4760230A7 |
| dc.contributor.referee2.fl_str_mv |
Santos, Celso Alberto Saibel |
| dc.contributor.referee2Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4728974A8 |
| dc.contributor.authorLattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4833279H8 |
| dc.contributor.author.fl_str_mv |
Dias, Laura Lima |
| contributor_str_mv |
Barrére, Eduardo Souza, Jairo Francisco de Moreno, Marcelo Ferreira Santos, Celso Alberto Saibel |
| dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| topic |
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Recuperação de informação Repositório de videos Categorização de texto ruidoso Processamento de linguagem natural Information retrieval Video repository Noisy text categorization Natural language processing |
| dc.subject.por.fl_str_mv |
Recuperação de informação Repositório de videos Categorização de texto ruidoso Processamento de linguagem natural Information retrieval Video repository Noisy text categorization Natural language processing |
| description |
Com o acúmulo de informações digitais armazenadas ao longo do tempo, alguns esforços precisam ser aplicados para facilitar a busca e indexação de conteúdos. Recursos como vídeos e áudios, por sua vez, são mais difíceis de serem tratados por mecanismos de busca. A anotação de vídeos é uma forma considerável de resumo do vídeo, busca e classificação. A parcela de vídeos que possui anotações atribuídas pelo próprio autor na maioria das vezes é muito pequena e pouco significativa, e anotar vídeos manualmente é bastante trabalhoso quando trata-se de bases legadas. Por esse motivo, automatizar esse processo tem sido desejado no campo da Recuperação de Informação. Em repositórios de videoaulas, onde a maior parte da informação se concentra na fala do professor, esse processo pode ser realizado através de anotações automáticas de transcritos gerados por sistemas de Reconhecimento Automático de Fala. Contudo, essa técnica produz textos ruidosos, dificultando a tarefa de anotação semântica automática. Entre muitas técnicas de Processamento de Linguagem de Natural utilizadas para anotação, não é trivial a escolha da técnica mais adequada a um determinado cenário, principalmente quando trata-se de anotar textos com ruídos. Essa pesquisa propõe analisar um conjunto de diferentes técnicas utilizadas para anotação automática e verificar o seu impacto em um mesmo cenário, o cenário de similaridade entre vídeos. |
| publishDate |
2017 |
| dc.date.issued.fl_str_mv |
2017-08-31 |
| dc.date.accessioned.fl_str_mv |
2018-03-21T19:26:08Z |
| dc.date.available.fl_str_mv |
2018-10-01 2018-03-21T19:26:08Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufjf.br/jspui/handle/ufjf/6473 |
| url |
https://repositorio.ufjf.br/jspui/handle/ufjf/6473 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Juiz de Fora (UFJF) |
| dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Ciência da Computação |
| dc.publisher.initials.fl_str_mv |
UFJF |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
ICE – Instituto de Ciências Exatas |
| publisher.none.fl_str_mv |
Universidade Federal de Juiz de Fora (UFJF) |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFJF instname:Universidade Federal de Juiz de Fora (UFJF) instacron:UFJF |
| instname_str |
Universidade Federal de Juiz de Fora (UFJF) |
| instacron_str |
UFJF |
| institution |
UFJF |
| reponame_str |
Repositório Institucional da UFJF |
| collection |
Repositório Institucional da UFJF |
| bitstream.url.fl_str_mv |
https://repositorio.ufjf.br/jspui/bitstream/ufjf/6473/4/lauralimadias.pdf.jpg https://repositorio.ufjf.br/jspui/bitstream/ufjf/6473/1/license.txt https://repositorio.ufjf.br/jspui/bitstream/ufjf/6473/2/lauralimadias.pdf https://repositorio.ufjf.br/jspui/bitstream/ufjf/6473/3/lauralimadias.pdf.txt |
| bitstream.checksum.fl_str_mv |
18a4c2f1f6a77f88d199dab9e6c30377 000e18a5aee6ca21bb5811ddf55fc37b b3e5ba056b9b605249afd68f92e98bad 0659a495e7098d3d303496d5f8ee93ea |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF) |
| repository.mail.fl_str_mv |
|
| _version_ |
1833922384056287232 |