Aplicação de autocodificadores convolucionais para identificação de danos em estruturas
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | , |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
| Programa de Pós-Graduação: |
Programa de Pós-graduação em Engenharia Civil (PEC)
|
| Departamento: |
Faculdade de Engenharia
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.ufjf.br/jspui/handle/ufjf/18104 |
Resumo: | O monitoramento contínuo da integridade estrutural tem se destacado devido a recentes incidentes que evidenciam a importância de se garantir a segurança e prever o comportamento dinâmico das estruturas. De forma geral, esse monitoramento é realizado por meio de sensores acoplados às estruturas analisadas, que fornecem dados para algoritmos específicos capazes de identificar o estado da integridade das mesmas. Nesse contexto, o presente trabalho tem como foco a aplicação de tecnologias como aprendizado de máquina e inteligência artificial, com ênfase em autocodificadores convolucionais, para avaliar a integridade das estruturas por meio da análise dos dados coletados. Para tanto, quatro estratégias de análise baseadas nos erros de reconstrução dos sinais dinâmicos e na distância de Mahalanobis dos espaços latentes, obtidos por modelos fundamentados em autocodificadores convolucionais, são utilizadas. A metodologia proposta foi validada por meio de dois conjuntos de dados. O primeiro conjunto, um pórtico biengastado, testado no Laboratório de Sinais e Imagens da Universidade de Juiz de Fora, representa uma estrutura com cenários de danos controlados. Por outro lado, a segunda aplicação, a ponte Z-24, representa uma estrutura real sujeita a variações de fatores externos. Os resultados obtidos evidenciaram a eficácia das estratégias em ambientes controlados e estruturas reais, uma vez que, em ambos os casos, foi possível se detectar alterações estruturais de modo satisfatório, indicando que a abordagem via CAE pode ser eficaz em estruturas reais. |
| id |
UFJF_f97705bf931c9b71bf25edb8f4283f94 |
|---|---|
| oai_identifier_str |
oai:hermes.cpd.ufjf.br:ufjf/18104 |
| network_acronym_str |
UFJF |
| network_name_str |
Repositório Institucional da UFJF |
| repository_id_str |
|
| spelling |
Barbosa, Flávio de Souzahttp://lattes.cnpq.brCury, Alexandre Abrahãohttp://lattes.cnpq.brAmaral, Rafaelle Piazzaroli Finottihttp://lattes.cnpq.brCarvalho, Graciela Nora Doz dehttp://lattes.cnpq.brNeves, Francisco de Assis dashttp://lattes.cnpq.brhttp://buscatextual.cnpq.brDalcin, Matheus Júnior Silveira2025-01-29T15:52:00Z2025-01-292025-01-29T15:52:00Z2024-10-17https://repositorio.ufjf.br/jspui/handle/ufjf/18104O monitoramento contínuo da integridade estrutural tem se destacado devido a recentes incidentes que evidenciam a importância de se garantir a segurança e prever o comportamento dinâmico das estruturas. De forma geral, esse monitoramento é realizado por meio de sensores acoplados às estruturas analisadas, que fornecem dados para algoritmos específicos capazes de identificar o estado da integridade das mesmas. Nesse contexto, o presente trabalho tem como foco a aplicação de tecnologias como aprendizado de máquina e inteligência artificial, com ênfase em autocodificadores convolucionais, para avaliar a integridade das estruturas por meio da análise dos dados coletados. Para tanto, quatro estratégias de análise baseadas nos erros de reconstrução dos sinais dinâmicos e na distância de Mahalanobis dos espaços latentes, obtidos por modelos fundamentados em autocodificadores convolucionais, são utilizadas. A metodologia proposta foi validada por meio de dois conjuntos de dados. O primeiro conjunto, um pórtico biengastado, testado no Laboratório de Sinais e Imagens da Universidade de Juiz de Fora, representa uma estrutura com cenários de danos controlados. Por outro lado, a segunda aplicação, a ponte Z-24, representa uma estrutura real sujeita a variações de fatores externos. Os resultados obtidos evidenciaram a eficácia das estratégias em ambientes controlados e estruturas reais, uma vez que, em ambos os casos, foi possível se detectar alterações estruturais de modo satisfatório, indicando que a abordagem via CAE pode ser eficaz em estruturas reais.Continuous monitoring of structural integrity has been highlighted due to recent incidents that highlight the importance of ensuring safety and predicting the dynamic behavior of structures. In general, this monitoring is performed by means of sensors attached to the analyzed structures, which provide data for specific algorithms capable of identifying their integrity status. In this context, this work focuses on the application of technologies such as machine learning and artificial intelligence, with an emphasis on convolutional autoencoders, to assess the integrity of structures through the analysis of the collected data. To this end, four analysis strategies based on the reconstruction errors of dynamic signals and the Mahalanobis distance of latent spaces, obtained by models based on convolutional autoencoders, are used. The proposed methodology was validated using two data sets. The first set, a double-clamped frame, tested at the Signals and Images Laboratory of the University of Juiz de Fora, represents a structure with controlled damage scenarios. On the other hand, the second application, the Z-24 bridge, represents a real structure subject to variations of external factors. The results obtained demonstrated the effectiveness of the strategies in controlled environments and real structures, since in both cases, it was possible to detect structural changes in a satisfactory manner, indicating that the CAE approach can be effective in real structures.porUniversidade Federal de Juiz de Fora (UFJF)Programa de Pós-graduação em Engenharia Civil (PEC)UFJFBrasilFaculdade de EngenhariaAttribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessCNPQ::ENGENHARIAS::ENGENHARIA CIVILMonitoramento da integridade estruturalRedes neuraisAutocodificadorConvoluçãoStructural health monitoringNeural networksAutoencoderConvolutionAplicação de autocodificadores convolucionais para identificação de danos em estruturasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFJFinstname:Universidade Federal de Juiz de Fora (UFJF)instacron:UFJFORIGINALmatheusjuniorsilveiradalcin.pdfmatheusjuniorsilveiradalcin.pdfapplication/pdf81278807https://repositorio.ufjf.br/jspui/bitstream/ufjf/18104/1/matheusjuniorsilveiradalcin.pdf95a3ef3aaf66985987a72507644fa848MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufjf.br/jspui/bitstream/ufjf/18104/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufjf.br/jspui/bitstream/ufjf/18104/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53TEXTmatheusjuniorsilveiradalcin.pdf.txtmatheusjuniorsilveiradalcin.pdf.txtExtracted texttext/plain112978https://repositorio.ufjf.br/jspui/bitstream/ufjf/18104/4/matheusjuniorsilveiradalcin.pdf.txt0c9443ad1da7e2f91822053981578735MD54THUMBNAILmatheusjuniorsilveiradalcin.pdf.jpgmatheusjuniorsilveiradalcin.pdf.jpgGenerated Thumbnailimage/jpeg1142https://repositorio.ufjf.br/jspui/bitstream/ufjf/18104/5/matheusjuniorsilveiradalcin.pdf.jpgc121d2064cd830c4edf38e13c8cc84b5MD55ufjf/181042025-01-30 04:04:38.13oai:hermes.cpd.ufjf.br:ufjf/18104Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufjf.br/oai/requestopendoar:2025-01-30T06:04:38Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)false |
| dc.title.pt_BR.fl_str_mv |
Aplicação de autocodificadores convolucionais para identificação de danos em estruturas |
| title |
Aplicação de autocodificadores convolucionais para identificação de danos em estruturas |
| spellingShingle |
Aplicação de autocodificadores convolucionais para identificação de danos em estruturas Dalcin, Matheus Júnior Silveira CNPQ::ENGENHARIAS::ENGENHARIA CIVIL Monitoramento da integridade estrutural Redes neurais Autocodificador Convolução Structural health monitoring Neural networks Autoencoder Convolution |
| title_short |
Aplicação de autocodificadores convolucionais para identificação de danos em estruturas |
| title_full |
Aplicação de autocodificadores convolucionais para identificação de danos em estruturas |
| title_fullStr |
Aplicação de autocodificadores convolucionais para identificação de danos em estruturas |
| title_full_unstemmed |
Aplicação de autocodificadores convolucionais para identificação de danos em estruturas |
| title_sort |
Aplicação de autocodificadores convolucionais para identificação de danos em estruturas |
| author |
Dalcin, Matheus Júnior Silveira |
| author_facet |
Dalcin, Matheus Júnior Silveira |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
Barbosa, Flávio de Souza |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br |
| dc.contributor.advisor-co1.fl_str_mv |
Cury, Alexandre Abrahão |
| dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br |
| dc.contributor.advisor-co2.fl_str_mv |
Amaral, Rafaelle Piazzaroli Finotti |
| dc.contributor.advisor-co2Lattes.fl_str_mv |
http://lattes.cnpq.br |
| dc.contributor.referee1.fl_str_mv |
Carvalho, Graciela Nora Doz de |
| dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br |
| dc.contributor.referee2.fl_str_mv |
Neves, Francisco de Assis das |
| dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br |
| dc.contributor.authorLattes.fl_str_mv |
http://buscatextual.cnpq.br |
| dc.contributor.author.fl_str_mv |
Dalcin, Matheus Júnior Silveira |
| contributor_str_mv |
Barbosa, Flávio de Souza Cury, Alexandre Abrahão Amaral, Rafaelle Piazzaroli Finotti Carvalho, Graciela Nora Doz de Neves, Francisco de Assis das |
| dc.subject.cnpq.fl_str_mv |
CNPQ::ENGENHARIAS::ENGENHARIA CIVIL |
| topic |
CNPQ::ENGENHARIAS::ENGENHARIA CIVIL Monitoramento da integridade estrutural Redes neurais Autocodificador Convolução Structural health monitoring Neural networks Autoencoder Convolution |
| dc.subject.por.fl_str_mv |
Monitoramento da integridade estrutural Redes neurais Autocodificador Convolução Structural health monitoring Neural networks Autoencoder Convolution |
| description |
O monitoramento contínuo da integridade estrutural tem se destacado devido a recentes incidentes que evidenciam a importância de se garantir a segurança e prever o comportamento dinâmico das estruturas. De forma geral, esse monitoramento é realizado por meio de sensores acoplados às estruturas analisadas, que fornecem dados para algoritmos específicos capazes de identificar o estado da integridade das mesmas. Nesse contexto, o presente trabalho tem como foco a aplicação de tecnologias como aprendizado de máquina e inteligência artificial, com ênfase em autocodificadores convolucionais, para avaliar a integridade das estruturas por meio da análise dos dados coletados. Para tanto, quatro estratégias de análise baseadas nos erros de reconstrução dos sinais dinâmicos e na distância de Mahalanobis dos espaços latentes, obtidos por modelos fundamentados em autocodificadores convolucionais, são utilizadas. A metodologia proposta foi validada por meio de dois conjuntos de dados. O primeiro conjunto, um pórtico biengastado, testado no Laboratório de Sinais e Imagens da Universidade de Juiz de Fora, representa uma estrutura com cenários de danos controlados. Por outro lado, a segunda aplicação, a ponte Z-24, representa uma estrutura real sujeita a variações de fatores externos. Os resultados obtidos evidenciaram a eficácia das estratégias em ambientes controlados e estruturas reais, uma vez que, em ambos os casos, foi possível se detectar alterações estruturais de modo satisfatório, indicando que a abordagem via CAE pode ser eficaz em estruturas reais. |
| publishDate |
2024 |
| dc.date.issued.fl_str_mv |
2024-10-17 |
| dc.date.accessioned.fl_str_mv |
2025-01-29T15:52:00Z |
| dc.date.available.fl_str_mv |
2025-01-29 2025-01-29T15:52:00Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufjf.br/jspui/handle/ufjf/18104 |
| url |
https://repositorio.ufjf.br/jspui/handle/ufjf/18104 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Juiz de Fora (UFJF) |
| dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Engenharia Civil (PEC) |
| dc.publisher.initials.fl_str_mv |
UFJF |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
Faculdade de Engenharia |
| publisher.none.fl_str_mv |
Universidade Federal de Juiz de Fora (UFJF) |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFJF instname:Universidade Federal de Juiz de Fora (UFJF) instacron:UFJF |
| instname_str |
Universidade Federal de Juiz de Fora (UFJF) |
| instacron_str |
UFJF |
| institution |
UFJF |
| reponame_str |
Repositório Institucional da UFJF |
| collection |
Repositório Institucional da UFJF |
| bitstream.url.fl_str_mv |
https://repositorio.ufjf.br/jspui/bitstream/ufjf/18104/1/matheusjuniorsilveiradalcin.pdf https://repositorio.ufjf.br/jspui/bitstream/ufjf/18104/2/license_rdf https://repositorio.ufjf.br/jspui/bitstream/ufjf/18104/3/license.txt https://repositorio.ufjf.br/jspui/bitstream/ufjf/18104/4/matheusjuniorsilveiradalcin.pdf.txt https://repositorio.ufjf.br/jspui/bitstream/ufjf/18104/5/matheusjuniorsilveiradalcin.pdf.jpg |
| bitstream.checksum.fl_str_mv |
95a3ef3aaf66985987a72507644fa848 4d2950bda3d176f570a9f8b328dfbbef 8a4605be74aa9ea9d79846c1fba20a33 0c9443ad1da7e2f91822053981578735 c121d2064cd830c4edf38e13c8cc84b5 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF) |
| repository.mail.fl_str_mv |
|
| _version_ |
1833922341248172032 |