Exportação concluída — 

Algoritmos de posicionamento por ponto preciso em tempo real para veículos agrícolas conectados

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Ramos, Izadora Aparecida lattes
Orientador(a): Silva, Felipe Oliveira e
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Lavras
Escola de Engenharia – EENG
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia de Sistemas e Automação
Departamento: Não Informado pela instituição
País: brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufla.br/handle/1/60046
Resumo: Global Navigation Satellite Systems (GNSS) play a critical role in Precision Agriculture (PA), which has revolutionized agricultural practices by enabling more efficient use of resources and improved decision-making. The successful application of GNSS in PA has offered significant benefits in terms of improved efficiency, productivity, and sustainability. A few decades after the first Global Navigation Satellite System (GNSS) was made available to civilians, it has already become the main navigation technology due to its global coverage, low cost, and versatility in different applications. Real-Time Precise Point Positioning (RT-PPP) is a technique that improves positioning accuracy by correcting common mode errors present in GNSS observables by means of products made available in real time by specialized agencies, such as the International GNSS Service (IGS) and the Faculty of Astronomical and Geophysical Sciences (FCAG) of the Argentine University of La Plata (UNLP). The Real-Time Service (RTS) of IGS provides various correction streams for RT-PPP deployment, whose availability is beyond 95% for the Global Positioning System (GPS) and 90% for the GLObal NAvigation Satellite System (GLONASS). To take full advantage of PPP and Real-Time Kinematic (RTK) and overcome the limitations of both techniques, PPP–RTK, which can be considered an extension of the PPP model, allows users to obtain absolute positioning using a single receiver, with greater accuracy and convergence speed by applying ambiguity resolution. The main objective of this work, which is the first in a series of studies and research, is the design, implementation, analysis, and validation of a prototype that performs RT-PPP, without however resolving the entire ambiguities (PPP-RTK), but focused on the use of single-frequency receivers (low cost) and only GPS pseudorange and Doppler observables. As the main contribution of this work, a system composed of two GPS RT-PPP software modules is developed, which have the functionality to collect observables and ephemeris data from the receiver (rover), collect the necessary corrections in real time, and apply the studied techniques in the processing of this data, the first using as processing strategy the Weighted and Iterated Least Squares (WILS) and the second, an Extended Kalman Filter (EKF). During epochs when the correction streams become momentarily unavailable or when communication problems/latency occur, the equipment user has no other option than to use outdated products, which may degrade position accuracy. One of the objectives of this work is to evaluate the impact of using outdated RT-PPP products on GPS positioning accuracy in Brazilian territory. As a main contribution, we show that the RT-PPP GPS positioning accuracy is not significantly degraded when outdated products up to 25 minutes are used, being able to comply with the Society of Automotive Engineers (SAE) J2945 specification, which stipulates a maximum horizontal position error of 1.5 meters, at 68% probability, aiming at Connected Autonomous Vehicle (CAV) applications. Results from experimental tests conducted in a stationary environment validate these findings. In addition to the communication latency/interruption problem in obtaining IGS products for corrections provided by RT-PPP, this work also investigates the existence of residual errors that remain in the GNSS observables, which need to be addressed to further improve positioning accuracy. Among these errors, the tropospheric error stands out, which is a Common Mode Error (CME) for which no RT-PPP products are currently provided, and also the multipath error, which is a Non-Common Mode Error (NCME) whose effect is associated with the reception of multiple GNSS signals reflected from the surrounding environment. In this work, we propose to estimate the multipath residual errors as first-order Gauss-Markov (GM) processes, which are augmented to the Extended Kalman Filter (EKF) state vector, after having their correlation times and driven noise Power Spectral Densities (PSDs) suitably identified. For the tropospheric error, we estimate and compensate for it via the University of New Brunswick 3 (UNB3) empirical model, as well as augmenting the EKF with one additional state to account for the residual wet tropospheric delay, which is modeled according to Niell’s mapping function. Therefore, the second objective of this work is to evaluate the effectiveness of the aforementioned techniques, and as a main contribution, we show that the use of the proposed residual error mitigation techniques, besides bringing increased complexity, does not yield significant accuracy improvements when compared to the standard single-frequency code-based RT-PPP solution. Results of experimental tests conducted in a dynamic environment validate these findings.
id UFLA_1af8e270b7fe230ff7cc337380e8011a
oai_identifier_str oai:repositorio.ufla.br:1/60046
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Lima, Danilo Alves de Camargo, Leandro da Silva Marques, Antônio Haroldo Silva, Felipe Oliveira e http://lattes.cnpq.br/9141174148180746Ramos, Izadora Aparecida 2025-07-11T19:51:10Z2025-02-21RAMOS, Izadora Aparecida. Algoritmos de posicionamento por ponto preciso em tempo real para veículos agrícolas conectados. 2025. 92 p. Dissertação (Mestrado em Engenharia de Sistemas e Automação) - Universidade Federal de Lavras, Lavras, 2025.https://repositorio.ufla.br/handle/1/60046Global Navigation Satellite Systems (GNSS) play a critical role in Precision Agriculture (PA), which has revolutionized agricultural practices by enabling more efficient use of resources and improved decision-making. The successful application of GNSS in PA has offered significant benefits in terms of improved efficiency, productivity, and sustainability. A few decades after the first Global Navigation Satellite System (GNSS) was made available to civilians, it has already become the main navigation technology due to its global coverage, low cost, and versatility in different applications. Real-Time Precise Point Positioning (RT-PPP) is a technique that improves positioning accuracy by correcting common mode errors present in GNSS observables by means of products made available in real time by specialized agencies, such as the International GNSS Service (IGS) and the Faculty of Astronomical and Geophysical Sciences (FCAG) of the Argentine University of La Plata (UNLP). The Real-Time Service (RTS) of IGS provides various correction streams for RT-PPP deployment, whose availability is beyond 95% for the Global Positioning System (GPS) and 90% for the GLObal NAvigation Satellite System (GLONASS). To take full advantage of PPP and Real-Time Kinematic (RTK) and overcome the limitations of both techniques, PPP–RTK, which can be considered an extension of the PPP model, allows users to obtain absolute positioning using a single receiver, with greater accuracy and convergence speed by applying ambiguity resolution. The main objective of this work, which is the first in a series of studies and research, is the design, implementation, analysis, and validation of a prototype that performs RT-PPP, without however resolving the entire ambiguities (PPP-RTK), but focused on the use of single-frequency receivers (low cost) and only GPS pseudorange and Doppler observables. As the main contribution of this work, a system composed of two GPS RT-PPP software modules is developed, which have the functionality to collect observables and ephemeris data from the receiver (rover), collect the necessary corrections in real time, and apply the studied techniques in the processing of this data, the first using as processing strategy the Weighted and Iterated Least Squares (WILS) and the second, an Extended Kalman Filter (EKF). During epochs when the correction streams become momentarily unavailable or when communication problems/latency occur, the equipment user has no other option than to use outdated products, which may degrade position accuracy. One of the objectives of this work is to evaluate the impact of using outdated RT-PPP products on GPS positioning accuracy in Brazilian territory. As a main contribution, we show that the RT-PPP GPS positioning accuracy is not significantly degraded when outdated products up to 25 minutes are used, being able to comply with the Society of Automotive Engineers (SAE) J2945 specification, which stipulates a maximum horizontal position error of 1.5 meters, at 68% probability, aiming at Connected Autonomous Vehicle (CAV) applications. Results from experimental tests conducted in a stationary environment validate these findings. In addition to the communication latency/interruption problem in obtaining IGS products for corrections provided by RT-PPP, this work also investigates the existence of residual errors that remain in the GNSS observables, which need to be addressed to further improve positioning accuracy. Among these errors, the tropospheric error stands out, which is a Common Mode Error (CME) for which no RT-PPP products are currently provided, and also the multipath error, which is a Non-Common Mode Error (NCME) whose effect is associated with the reception of multiple GNSS signals reflected from the surrounding environment. In this work, we propose to estimate the multipath residual errors as first-order Gauss-Markov (GM) processes, which are augmented to the Extended Kalman Filter (EKF) state vector, after having their correlation times and driven noise Power Spectral Densities (PSDs) suitably identified. For the tropospheric error, we estimate and compensate for it via the University of New Brunswick 3 (UNB3) empirical model, as well as augmenting the EKF with one additional state to account for the residual wet tropospheric delay, which is modeled according to Niell’s mapping function. Therefore, the second objective of this work is to evaluate the effectiveness of the aforementioned techniques, and as a main contribution, we show that the use of the proposed residual error mitigation techniques, besides bringing increased complexity, does not yield significant accuracy improvements when compared to the standard single-frequency code-based RT-PPP solution. Results of experimental tests conducted in a dynamic environment validate these findings.Sistemas Globais de Navegação por Satélite (GNSS) desempenham um papel crítico na Agricultura de Precisão (AP), a qual tem revolucionado as práticas agrícolas, possibilitando um uso mais eficiente dos recursos e uma melhor tomada de decisões. A aplicação bem-sucedida do GNSS na AP tem oferecido benefícios significativos em termos de eficiência, produtividade e sustentabilidade aprimoradas. Poucas décadas após o primeiro GNSS ter sido disponibilizado para uso civil, ele se consolidou como a principal tecnologia de navegação devido à sua cobertura global, baixo custo e versatilidade em diferentes aplicações. O Posicionamento por Ponto Preciso em Tempo Real (PPP-TR) é uma técnica que melhora a precisão do posicionamento corrigindo Erros de Modo Comum (CME) presentes em observáveis GNSS por meio de produtos disponibilizados em tempo real por agências especializadas, como o Serviço Internacional de GNSS (IGS) e a Faculdade de Ciências Astronômicas e Geofísicas (FCAG) da Universidade Argentina de La Plata (UNLP). O Serviço em Tempo Real (RTS) do IGS fornece vários fluxos de correção para implantação do PPP-TR, cuja disponibilidade é superior a 95% para o Sistema de Posicionamento Global (GPS) e 90% para o GLObal NAvigation Satellite System (GLONASS). Para aproveitar ao máximo as vantagens do PPP e do Real-Time Kinematic (RTK) e superar as limitações de ambas as técnicas, o PPP–RTK, o qual pode ser considerado uma extensão do modelo PPP, permite aos usuários obter posicionamento absoluto usando um único receptor, com maior precisão e velocidade de convergência aplicando resolução das ambiguidades. O primeiro e principal objetivo deste trabalho, o qual figura como primeiro de uma série de estudos, é a pesquisa, implementação, análise e validação de um protótipo que realize o PPP-TR, sem contudo resolver as ambiguidades inteiras (PPP-RTK), mas focado no uso de receptores de simples frequência (baixo custo) e apenas observáveis do tipo pseudo-distâncias e deslocamentos Doppler do GPS. Como principal contribuição do trabalho, são desenvolvidos e embarcados em um microcomputador de tempo real, dois softwares de PPP-TR via GPS, os quais têm a funcionalidade de obter os dados de observáveis e efemérides do receptor (rover), coletar as correções necessárias em tempo real e realizar o processamento do mesmo aplicando as técnicas estudadas, sendo que o primeiro tem como estratégia de processamento os Mínimos Quadrados Iterados Ponderado (Weighted and Iterated Least Squares - WILS) e o segundo, um Filtro de Kalman Estendido (Extended Kalman Filter - EKF). Durante as épocas em que os fluxos de correção podem ficar momentaneamente indisponíveis ou quando ocorrem problemas de comunicação/latência, o usuário do equipamento não tem outra opção a não ser utilizar produtos desatualizados, os quais podem degradar a precisão da posição. Um segundo objetivo deste trabalho, portanto, é avaliar o impacto do uso de produtos PPP-TR desatualizados na precisão do posicionamento GPS em território brasileiro. Como contribuição desta análise, mostra-se que a precisão do posicionamento GPS PPP-TR não é significativamente degradada quando são utilizados produtos desatualizados em até 25 minutos, podendo atender à especificação J2945 da Sociedade dos Engenheiros Automotivos (SAE), a qual estipula um erro máximo de 1,5 metros para a posição horizontal, a 68% de probabilidade, visando aplicações de Veículos Autônomos Conectados (CAV). Testes experimentais, conduzidos em ambiente estacionário, validam as constatações supracitadas. Além do problema da latência/indisponibilidade de produtos PPP-TR, este trabalho investiga, também, o efeito de erros residuais nas observáveis GNSS, que precisam ser mitigados quando se deseja melhorar ainda mais a precisão do posicionamento. Dentre esses erros, pode-se destacar o troposférico, que é um CME para o qual atualmente não são fornecidos produtos PPP-TR, e também o de multicaminho, que é um Erro de Modo Não-Comum (NCME) cujo efeito está associado à recepção de múltiplos sinais GNSS refletidos do ambiente circundante. Neste trabalho, propõe-se estimar os erros residuais de multicaminho como processos de Gauss-Markov (GM) de primeira ordem, os quais são adicionados ao vetor de estado do EKF, após terem seus tempos de correlação e a Densidade Espectral de Potência (PSD) dos ruídos diretores devidamente identificados. Já o erro troposférico é estimado e compensado por meio do modelo empírico da Universidade de New Brunswick 3 (UNB3), adicionando-se um estado ao EKF, que considera o atraso troposférico úmido residual, o qual é modelado de acordo com função de mapeamento de Niell. Portanto, o terceiro e último objetivo deste trabalho é avaliar a eficácia das técnicas acima mencionadas e, como principal contribuição, mostra-se que o uso das técnicas de mitigação dos erros residuais propostas, além de trazer maior complexidade, não produz melhorias significativas na precisão do posicionamento quando comparada à solução PPP-TR padrão com simples frequência. Resultados de testes experimentais, conduzidos em ambiente dinâmico, validam as constatações supracitadas.TecnológicoTecnologia e produçãoODS 2: Fome zero e agricultura sustentávelODS 12: Consumo e produção responsáveispt_BRporUniversidade Federal de LavrasEscola de Engenharia – EENGPrograma de Pós-Graduação em Engenharia de Sistemas e AutomaçãoUFLAbrasilAttribution 3.0 Brazilinfo:eu-repo/semantics/openAccessEngenhariasGlobal Navigation Satellite Systems (GNSS)Global Positioning System (GPS)Posicionamento por Ponto Preciso em Tempo Real (PPP-TR)Weighted and Iterated Least Squares (WILS)Extended Kalman Filter (EKF)Agricultura de Precisão (AP)Algoritmos de posicionamento por ponto preciso em tempo real para veículos agrícolas conectadosReal-time precise point positioning algorithms for connected agricultural vehiclesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLACC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81025https://repositorio.ufla.br/bitstreams/e436e746-0720-4d0d-95ff-c4a077a626fb/download5a033ee506f3a0a175bee8fc81f0bd66MD51falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-8955https://repositorio.ufla.br/bitstreams/357f3970-2335-4786-9b76-09540c6fe423/downloaddc1a173fe9489e283d3a1f54f6ab2ab9MD52falseAnonymousREADORIGINALTexto completo.pdfTexto completo.pdfapplication/pdf1811197https://repositorio.ufla.br/bitstreams/d14d0f2f-01b8-48e8-a804-6c955538e346/downloadfc3c08ae9f800355d9812e8476e4ef29MD52trueAnonymousREADImpactos da pesquisa.pdfImpactos da pesquisa.pdfapplication/pdf101061https://repositorio.ufla.br/bitstreams/8ed45d89-467a-404a-961a-0ed8b8d27954/download68b8456ea7a110bb56b4657d32717a9aMD53falseAnonymousREADTEXTTexto completo.pdf.txtTexto completo.pdf.txtExtracted texttext/plain104584https://repositorio.ufla.br/bitstreams/a2b5e85b-89db-44f2-9ecf-8c88a4b64851/downloadad547897a9eb8241aa8f999804333eceMD54falseAnonymousREADImpactos da pesquisa.pdf.txtImpactos da pesquisa.pdf.txtExtracted texttext/plain5636https://repositorio.ufla.br/bitstreams/e61c80c5-c76f-4c7c-a351-fc95ca08b077/download8c27f35c5fceb8d0adfa13f0641ed977MD56falseAnonymousREADTHUMBNAILTexto completo.pdf.jpgTexto completo.pdf.jpgGenerated Thumbnailimage/jpeg3320https://repositorio.ufla.br/bitstreams/fafecc86-d0de-4f13-8bcf-520d0085b663/downloadadc28572fda58bf452df412b0c55c729MD55falseAnonymousREADImpactos da pesquisa.pdf.jpgImpactos da pesquisa.pdf.jpgGenerated Thumbnailimage/jpeg5240https://repositorio.ufla.br/bitstreams/1048e44b-667a-4ab1-ad83-1cbb703a6b39/downloadbd051ec549f247eadac763ca8382b922MD57falseAnonymousREAD1/600462025-08-19 09:34:30.299open.accessoai:repositorio.ufla.br:1/60046https://repositorio.ufla.brRepositório InstitucionalPUBhttps://repositorio.ufla.br/server/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2025-08-19T12:34:30Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)falseREVDTEFSQcOHw4NPIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCk8gcmVmZXJpZG8gYXV0b3I6CgphKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBlbnRyZWd1ZSDDqSBzZXUgdHJhYmFsaG8gb3JpZ2luYWwsIGUgcXVlIGRldMOpbSBvIGRpcmVpdG8gZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIERlY2xhcmEgdGFtYsOpbSBxdWUgYSBlbnRyZWdhIGRvIGRvY3VtZW50byBuw6NvIGluZnJpbmdlLCB0YW50byBxdWFudG8gbGhlIMOpIHBvc3PDrXZlbCBzYWJlciwgb3MgZGlyZWl0b3MgZGUgcXVhbHF1ZXIgb3V0cmEgcGVzc29hIG91ICBlbnRpZGFkZS4KCmIpIFNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIGNvbnTDqW0gbWF0ZXJpYWwgZG8gcXVhbCBuw6NvIGRldMOpbSBvcyBkaXJlaXRvcyBkZSBhdXRvciwgZGVjbGFyYSBxdWUgb2J0ZXZlIGF1dG9yaXphw6fDo28gZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGRlIGF1dG9yIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgTGF2cmFzIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgY3Vqb3MgZGlyZWl0b3Mgc8OjbyBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbwpubyB0ZXh0byBvdSBjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLiBTZSBvIGRvY3VtZW50byBlbnRyZWd1ZSDDqSBiYXNlYWRvIGVtIHRyYWJhbGhvIGZpbmFuY2lhZG8gb3UgYXBvaWFkbyBwb3Igb3V0cmEgaW5zdGl0dWnDp8OjbyBxdWUgbsOjbyBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIExhdnJhcywgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCg==
dc.title.none.fl_str_mv Algoritmos de posicionamento por ponto preciso em tempo real para veículos agrícolas conectados
dc.title.alternative.none.fl_str_mv Real-time precise point positioning algorithms for connected agricultural vehicles
title Algoritmos de posicionamento por ponto preciso em tempo real para veículos agrícolas conectados
spellingShingle Algoritmos de posicionamento por ponto preciso em tempo real para veículos agrícolas conectados
Ramos, Izadora Aparecida
Engenharias
Global Navigation Satellite Systems (GNSS)
Global Positioning System (GPS)
Posicionamento por Ponto Preciso em Tempo Real (PPP-TR)
Weighted and Iterated Least Squares (WILS)
Extended Kalman Filter (EKF)
Agricultura de Precisão (AP)
title_short Algoritmos de posicionamento por ponto preciso em tempo real para veículos agrícolas conectados
title_full Algoritmos de posicionamento por ponto preciso em tempo real para veículos agrícolas conectados
title_fullStr Algoritmos de posicionamento por ponto preciso em tempo real para veículos agrícolas conectados
title_full_unstemmed Algoritmos de posicionamento por ponto preciso em tempo real para veículos agrícolas conectados
title_sort Algoritmos de posicionamento por ponto preciso em tempo real para veículos agrícolas conectados
author Ramos, Izadora Aparecida
author_facet Ramos, Izadora Aparecida
author_role author
dc.contributor.co-advisor.none.fl_str_mv Lima, Danilo Alves de
dc.contributor.referee.none.fl_str_mv Camargo, Leandro da Silva
Marques, Antônio Haroldo
dc.contributor.advisor1.fl_str_mv Silva, Felipe Oliveira e
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/9141174148180746
dc.contributor.author.fl_str_mv Ramos, Izadora Aparecida
contributor_str_mv Silva, Felipe Oliveira e
dc.subject.cnpq.fl_str_mv Engenharias
topic Engenharias
Global Navigation Satellite Systems (GNSS)
Global Positioning System (GPS)
Posicionamento por Ponto Preciso em Tempo Real (PPP-TR)
Weighted and Iterated Least Squares (WILS)
Extended Kalman Filter (EKF)
Agricultura de Precisão (AP)
dc.subject.por.fl_str_mv Global Navigation Satellite Systems (GNSS)
Global Positioning System (GPS)
Posicionamento por Ponto Preciso em Tempo Real (PPP-TR)
Weighted and Iterated Least Squares (WILS)
Extended Kalman Filter (EKF)
Agricultura de Precisão (AP)
description Global Navigation Satellite Systems (GNSS) play a critical role in Precision Agriculture (PA), which has revolutionized agricultural practices by enabling more efficient use of resources and improved decision-making. The successful application of GNSS in PA has offered significant benefits in terms of improved efficiency, productivity, and sustainability. A few decades after the first Global Navigation Satellite System (GNSS) was made available to civilians, it has already become the main navigation technology due to its global coverage, low cost, and versatility in different applications. Real-Time Precise Point Positioning (RT-PPP) is a technique that improves positioning accuracy by correcting common mode errors present in GNSS observables by means of products made available in real time by specialized agencies, such as the International GNSS Service (IGS) and the Faculty of Astronomical and Geophysical Sciences (FCAG) of the Argentine University of La Plata (UNLP). The Real-Time Service (RTS) of IGS provides various correction streams for RT-PPP deployment, whose availability is beyond 95% for the Global Positioning System (GPS) and 90% for the GLObal NAvigation Satellite System (GLONASS). To take full advantage of PPP and Real-Time Kinematic (RTK) and overcome the limitations of both techniques, PPP–RTK, which can be considered an extension of the PPP model, allows users to obtain absolute positioning using a single receiver, with greater accuracy and convergence speed by applying ambiguity resolution. The main objective of this work, which is the first in a series of studies and research, is the design, implementation, analysis, and validation of a prototype that performs RT-PPP, without however resolving the entire ambiguities (PPP-RTK), but focused on the use of single-frequency receivers (low cost) and only GPS pseudorange and Doppler observables. As the main contribution of this work, a system composed of two GPS RT-PPP software modules is developed, which have the functionality to collect observables and ephemeris data from the receiver (rover), collect the necessary corrections in real time, and apply the studied techniques in the processing of this data, the first using as processing strategy the Weighted and Iterated Least Squares (WILS) and the second, an Extended Kalman Filter (EKF). During epochs when the correction streams become momentarily unavailable or when communication problems/latency occur, the equipment user has no other option than to use outdated products, which may degrade position accuracy. One of the objectives of this work is to evaluate the impact of using outdated RT-PPP products on GPS positioning accuracy in Brazilian territory. As a main contribution, we show that the RT-PPP GPS positioning accuracy is not significantly degraded when outdated products up to 25 minutes are used, being able to comply with the Society of Automotive Engineers (SAE) J2945 specification, which stipulates a maximum horizontal position error of 1.5 meters, at 68% probability, aiming at Connected Autonomous Vehicle (CAV) applications. Results from experimental tests conducted in a stationary environment validate these findings. In addition to the communication latency/interruption problem in obtaining IGS products for corrections provided by RT-PPP, this work also investigates the existence of residual errors that remain in the GNSS observables, which need to be addressed to further improve positioning accuracy. Among these errors, the tropospheric error stands out, which is a Common Mode Error (CME) for which no RT-PPP products are currently provided, and also the multipath error, which is a Non-Common Mode Error (NCME) whose effect is associated with the reception of multiple GNSS signals reflected from the surrounding environment. In this work, we propose to estimate the multipath residual errors as first-order Gauss-Markov (GM) processes, which are augmented to the Extended Kalman Filter (EKF) state vector, after having their correlation times and driven noise Power Spectral Densities (PSDs) suitably identified. For the tropospheric error, we estimate and compensate for it via the University of New Brunswick 3 (UNB3) empirical model, as well as augmenting the EKF with one additional state to account for the residual wet tropospheric delay, which is modeled according to Niell’s mapping function. Therefore, the second objective of this work is to evaluate the effectiveness of the aforementioned techniques, and as a main contribution, we show that the use of the proposed residual error mitigation techniques, besides bringing increased complexity, does not yield significant accuracy improvements when compared to the standard single-frequency code-based RT-PPP solution. Results of experimental tests conducted in a dynamic environment validate these findings.
publishDate 2025
dc.date.accessioned.fl_str_mv 2025-07-11T19:51:10Z
dc.date.issued.fl_str_mv 2025-02-21
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv RAMOS, Izadora Aparecida. Algoritmos de posicionamento por ponto preciso em tempo real para veículos agrícolas conectados. 2025. 92 p. Dissertação (Mestrado em Engenharia de Sistemas e Automação) - Universidade Federal de Lavras, Lavras, 2025.
dc.identifier.uri.fl_str_mv https://repositorio.ufla.br/handle/1/60046
identifier_str_mv RAMOS, Izadora Aparecida. Algoritmos de posicionamento por ponto preciso em tempo real para veículos agrícolas conectados. 2025. 92 p. Dissertação (Mestrado em Engenharia de Sistemas e Automação) - Universidade Federal de Lavras, Lavras, 2025.
url https://repositorio.ufla.br/handle/1/60046
dc.language.iso.fl_str_mv pt_BR
por
language_invalid_str_mv pt_BR
language por
dc.rights.driver.fl_str_mv Attribution 3.0 Brazil
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 3.0 Brazil
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Lavras
Escola de Engenharia – EENG
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia de Sistemas e Automação
dc.publisher.initials.fl_str_mv UFLA
dc.publisher.country.fl_str_mv brasil
publisher.none.fl_str_mv Universidade Federal de Lavras
Escola de Engenharia – EENG
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
bitstream.url.fl_str_mv https://repositorio.ufla.br/bitstreams/e436e746-0720-4d0d-95ff-c4a077a626fb/download
https://repositorio.ufla.br/bitstreams/357f3970-2335-4786-9b76-09540c6fe423/download
https://repositorio.ufla.br/bitstreams/d14d0f2f-01b8-48e8-a804-6c955538e346/download
https://repositorio.ufla.br/bitstreams/8ed45d89-467a-404a-961a-0ed8b8d27954/download
https://repositorio.ufla.br/bitstreams/a2b5e85b-89db-44f2-9ecf-8c88a4b64851/download
https://repositorio.ufla.br/bitstreams/e61c80c5-c76f-4c7c-a351-fc95ca08b077/download
https://repositorio.ufla.br/bitstreams/fafecc86-d0de-4f13-8bcf-520d0085b663/download
https://repositorio.ufla.br/bitstreams/1048e44b-667a-4ab1-ad83-1cbb703a6b39/download
bitstream.checksum.fl_str_mv 5a033ee506f3a0a175bee8fc81f0bd66
dc1a173fe9489e283d3a1f54f6ab2ab9
fc3c08ae9f800355d9812e8476e4ef29
68b8456ea7a110bb56b4657d32717a9a
ad547897a9eb8241aa8f999804333ece
8c27f35c5fceb8d0adfa13f0641ed977
adc28572fda58bf452df412b0c55c729
bd051ec549f247eadac763ca8382b922
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1854947679368380416