Uso de séries temporais para o mapeamento da cafeicultura

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Souza, Carolina Gusmão
Orientador(a): Carvalho, Luis Marcelo Tavares de
Banca de defesa: Volpato, Margarete Marin Lodelo, Alves, Helena Maria Ramos, Oliveira, Luicano Teixeira de, Suzuki, Ludmila Zambaldi
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: UNIVERSIDADE FEDERAL DE LAVRAS
Programa de Pós-Graduação: DCF - Departamento de Ciências Florestais
Departamento: Não Informado pela instituição
País: BRASIL
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufla.br/handle/1/9410
Resumo: Coffee is one of the main agricultural activities, with great importance in Brazil and in the world, being the State of Minas the largest coffee producer in the country. Estimate the basic data from this culture correctly is a challenge, once obtaining such information have little detail and the sector is still missing accurate information. Geotechnologies has been promising to fill this gap, evaluating more correctly the dynamics of coffee. However, the mapping of these areas is still a difficult task, since these areas are too complex to map, presenting a high confusion among the targets. To meet this need, the goal this study was to propose a methodology for mapping of coffee, by multispectral and multi-temporal variables. The study was conducted in two distinct areas, which are located in the State of Minas Gerais, the first one in the South region and the second in the Midwest region of the State. Firstly, classifications was performed, using high-resolution satellite imagery RapidEye, testing different machine learning algorithms and the combination of different variables (spectral, geometrical and textural) in the classification process. The results showed that the Suport Vector Machine algorithm achieved the best results in the rankings for all areas, with overall accuracy of 88.33%. The textural variables when associated with spectral, improved a little accuracy, however, there was not significant difference when the ratings were compared. Although the results have been shown with good levels of accuracy, yet there was much confusion between classes. To overcome this gap, we proposed a new method for mapping using data as variables multi-temporal in the classification process. The results showed that using the multi-temporal variables, integrated the spectral variables, obtained overall accuracy of 93% and reduced significantly the confusion among the targets, making more precise classification process. The methodology proposed in this study was efficient to map coffee areas.
id UFLA_9aa6fcd55ba20e5963e3686419175f90
oai_identifier_str oai:repositorio.ufla.br:1/9410
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling 2015-05-08T19:12:28Z2015-05-08T19:12:28Z2015-05-082015-02-24SOUZA, C. G. Uso de séries temporais para o mapeamento da cafeicultura. 2015. 162 p. Tese (Doutorado em Engenharia Florestal)-Universidade Federal de Lavras, Lavras, 2015.https://repositorio.ufla.br/handle/1/9410Coffee is one of the main agricultural activities, with great importance in Brazil and in the world, being the State of Minas the largest coffee producer in the country. Estimate the basic data from this culture correctly is a challenge, once obtaining such information have little detail and the sector is still missing accurate information. Geotechnologies has been promising to fill this gap, evaluating more correctly the dynamics of coffee. However, the mapping of these areas is still a difficult task, since these areas are too complex to map, presenting a high confusion among the targets. To meet this need, the goal this study was to propose a methodology for mapping of coffee, by multispectral and multi-temporal variables. The study was conducted in two distinct areas, which are located in the State of Minas Gerais, the first one in the South region and the second in the Midwest region of the State. Firstly, classifications was performed, using high-resolution satellite imagery RapidEye, testing different machine learning algorithms and the combination of different variables (spectral, geometrical and textural) in the classification process. The results showed that the Suport Vector Machine algorithm achieved the best results in the rankings for all areas, with overall accuracy of 88.33%. The textural variables when associated with spectral, improved a little accuracy, however, there was not significant difference when the ratings were compared. Although the results have been shown with good levels of accuracy, yet there was much confusion between classes. To overcome this gap, we proposed a new method for mapping using data as variables multi-temporal in the classification process. The results showed that using the multi-temporal variables, integrated the spectral variables, obtained overall accuracy of 93% and reduced significantly the confusion among the targets, making more precise classification process. The methodology proposed in this study was efficient to map coffee areas.A cafeicultura representa uma das principais atividades agrícolas, com grande importância no Brasil e no mundo, sendo o estado de Minas Gerais o maior produtor de café do país. Estimar os dados básicos desta cultura corretamente é um desafio, uma vez que as informações obtidas são pouco detalhadas e o setor ainda é carente de dados precisos. As geotecnologias têm sido promissoras para suprir esta lacuna, avaliando de forma mais precisa a dinâmica da cafeicultura. Porém, o mapeamento dessas áreas ainda é uma tarefa difícil, uma vez que elas são muito complexas de serem mapeadas, apresentando uma alta confusão entre os alvos. Para suprir esta necessidade, este trabalho foi realizado com o objetivo geral de propor uma metodologia para o mapeamento da cafeicultura, por meio de variáveis multiespectrais e multitemporais. O estudo foi conduzido em duas áreas distintas do estado de Minas Gerais, uma na região sul e a outra na região centro-oeste. Primeiramente, foram realizadas classificações, utilizando imagens de alta resolução do satélite RapidEye, testando diferentes algoritmos de aprendizagem de máquina e a combinação de diferentes variáveis (espectrais, geométricas e texturais) no processo de classificação. Os resultados mostraram que o algoritmo Support Vector Machine obteve os melhores resultados nas classificações para todas as áreas, com acurácia global de 88,33%. As variáveis texturais, quando associadas às espectrais, melhoraram a acurácia da classificação, porém, não houve diferença significativa entre as classificações. Apesar de os resultados terem se mostrado com bons índices de acerto, ainda houve muita confusão entre as classes. Foi proposto um novo método de mapeamento, utilizando dados multitemporais como variáveis no processo de classificação. Os resultados mostraram que os índices de acerto utilizando as variáveis multitemporais, integrados a variáveis espectrais, apresentaram índices de acurácia global de 93,00% e diminuíram significativamente a confusão entre os alvos, tornando o processo de classificação mais preciso. A metodologia proposta neste estudo mostrou eficiência no mapeamento de áreas cafeeiras.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Manejo FlorestalUNIVERSIDADE FEDERAL DE LAVRASDCF - Departamento de Ciências FlorestaisUFLABRASILCNPQ_NÃO_INFORMADOCaféClassificação de imagensSensoriamento remotoAlgoritmos de aprendizagem de máquinaGreenbownCoffeeImage classificationRemote sensingMachine learning algorithmsGreenbrownUso de séries temporais para o mapeamento da cafeiculturainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisCarvalho, Luis Marcelo Tavares deVolpato, Margarete Marin LodeloAlves, Helena Maria RamosOliveira, Luicano Teixeira deSuzuki, Ludmila ZambaldiSouza, Carolina Gusmãoinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLALICENSElicense.txtlicense.txttext/plain; charset=utf-8953https://repositorio.ufla.br/bitstreams/bccb1e0d-8a36-4a99-947e-efd07f1ccb62/download760884c1e72224de569e74f79eb87ce3MD51falseAnonymousREADORIGINALTESE_Uso de séries temporais para o mapeamento da cafeicultura.pdfTESE_Uso de séries temporais para o mapeamento da cafeicultura.pdfapplication/pdf3348603https://repositorio.ufla.br/bitstreams/9ab26631-de8a-473c-bdb4-29b16e0cf8e2/download04086a3891e48182148ad9d6a185447bMD52trueAnonymousREADTEXTTESE_Uso de séries temporais para o mapeamento da cafeicultura.pdf.txtTESE_Uso de séries temporais para o mapeamento da cafeicultura.pdf.txtExtracted texttext/plain102465https://repositorio.ufla.br/bitstreams/c0ba0f10-0465-4579-afd5-58fefd370dc5/download6fae0d957d194dd4e4a2d543563872f2MD53falseAnonymousREADTHUMBNAILTESE_Uso de séries temporais para o mapeamento da cafeicultura.pdf.jpgTESE_Uso de séries temporais para o mapeamento da cafeicultura.pdf.jpgGenerated Thumbnailimage/jpeg2936https://repositorio.ufla.br/bitstreams/9a5141a1-c3d4-48a9-aef9-90590cab7fea/download03df68582cfc97bf562ecf262283c7c0MD54falseAnonymousREAD1/94102025-08-06 11:09:10.066open.accessoai:repositorio.ufla.br:1/9410https://repositorio.ufla.brRepositório InstitucionalPUBhttps://repositorio.ufla.br/server/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2025-08-06T14:09:10Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)falseREVDTEFSQcOHw4NPIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCk8gcmVmZXJpZG8gYXV0b3I6CmEpIERlY2xhcmEgcXVlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIMOpIHNldSB0cmFiYWxobyBvcmlnaW5hbCwgZSBxdWUKZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4KRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2UsIHRhbnRvIHF1YW50bwpsaGUgw6kgcG9zc8OtdmVsIHNhYmVyLCBvcyBkaXJlaXRvcyBkZSBxdWFscXVlciBvdXRyYSBwZXNzb2Egb3UKZW50aWRhZGUuCmIpIFNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIGNvbnTDqW0gbWF0ZXJpYWwgZG8gcXVhbCBuw6NvIGRldMOpbSBvcwpkaXJlaXRvcyBkZSBhdXRvciwgZGVjbGFyYSBxdWUgb2J0ZXZlIGF1dG9yaXphw6fDo28gZG8gZGV0ZW50b3IgZG9zCmRpcmVpdG9zIGRlIGF1dG9yIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgTGF2cmFzIG9zCmRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgY3Vqb3MKZGlyZWl0b3Mgc8OjbyBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbwpubyB0ZXh0byBvdSBjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLiBTZSBvIGRvY3VtZW50byBlbnRyZWd1ZSDDqQpiYXNlYWRvIGVtIHRyYWJhbGhvIGZpbmFuY2lhZG8gb3UgYXBvaWFkbyBwb3Igb3V0cmEgaW5zdGl0dWnDp8OjbyBxdWUKbsOjbyBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIExhdnJhcywgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIKb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgo=
dc.title.pt_BR.fl_str_mv Uso de séries temporais para o mapeamento da cafeicultura
title Uso de séries temporais para o mapeamento da cafeicultura
spellingShingle Uso de séries temporais para o mapeamento da cafeicultura
Souza, Carolina Gusmão
CNPQ_NÃO_INFORMADO
Café
Classificação de imagens
Sensoriamento remoto
Algoritmos de aprendizagem de máquina
Greenbown
Coffee
Image classification
Remote sensing
Machine learning algorithms
Greenbrown
title_short Uso de séries temporais para o mapeamento da cafeicultura
title_full Uso de séries temporais para o mapeamento da cafeicultura
title_fullStr Uso de séries temporais para o mapeamento da cafeicultura
title_full_unstemmed Uso de séries temporais para o mapeamento da cafeicultura
title_sort Uso de séries temporais para o mapeamento da cafeicultura
author Souza, Carolina Gusmão
author_facet Souza, Carolina Gusmão
author_role author
dc.contributor.advisor1.fl_str_mv Carvalho, Luis Marcelo Tavares de
dc.contributor.referee1.fl_str_mv Volpato, Margarete Marin Lodelo
Alves, Helena Maria Ramos
Oliveira, Luicano Teixeira de
Suzuki, Ludmila Zambaldi
dc.contributor.author.fl_str_mv Souza, Carolina Gusmão
contributor_str_mv Carvalho, Luis Marcelo Tavares de
Volpato, Margarete Marin Lodelo
Alves, Helena Maria Ramos
Oliveira, Luicano Teixeira de
Suzuki, Ludmila Zambaldi
dc.subject.cnpq.fl_str_mv CNPQ_NÃO_INFORMADO
topic CNPQ_NÃO_INFORMADO
Café
Classificação de imagens
Sensoriamento remoto
Algoritmos de aprendizagem de máquina
Greenbown
Coffee
Image classification
Remote sensing
Machine learning algorithms
Greenbrown
dc.subject.por.fl_str_mv Café
Classificação de imagens
Sensoriamento remoto
Algoritmos de aprendizagem de máquina
Greenbown
Coffee
Image classification
Remote sensing
Machine learning algorithms
Greenbrown
description Coffee is one of the main agricultural activities, with great importance in Brazil and in the world, being the State of Minas the largest coffee producer in the country. Estimate the basic data from this culture correctly is a challenge, once obtaining such information have little detail and the sector is still missing accurate information. Geotechnologies has been promising to fill this gap, evaluating more correctly the dynamics of coffee. However, the mapping of these areas is still a difficult task, since these areas are too complex to map, presenting a high confusion among the targets. To meet this need, the goal this study was to propose a methodology for mapping of coffee, by multispectral and multi-temporal variables. The study was conducted in two distinct areas, which are located in the State of Minas Gerais, the first one in the South region and the second in the Midwest region of the State. Firstly, classifications was performed, using high-resolution satellite imagery RapidEye, testing different machine learning algorithms and the combination of different variables (spectral, geometrical and textural) in the classification process. The results showed that the Suport Vector Machine algorithm achieved the best results in the rankings for all areas, with overall accuracy of 88.33%. The textural variables when associated with spectral, improved a little accuracy, however, there was not significant difference when the ratings were compared. Although the results have been shown with good levels of accuracy, yet there was much confusion between classes. To overcome this gap, we proposed a new method for mapping using data as variables multi-temporal in the classification process. The results showed that using the multi-temporal variables, integrated the spectral variables, obtained overall accuracy of 93% and reduced significantly the confusion among the targets, making more precise classification process. The methodology proposed in this study was efficient to map coffee areas.
publishDate 2015
dc.date.submitted.none.fl_str_mv 2015-02-24
dc.date.accessioned.fl_str_mv 2015-05-08T19:12:28Z
dc.date.available.fl_str_mv 2015-05-08T19:12:28Z
dc.date.issued.fl_str_mv 2015-05-08
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SOUZA, C. G. Uso de séries temporais para o mapeamento da cafeicultura. 2015. 162 p. Tese (Doutorado em Engenharia Florestal)-Universidade Federal de Lavras, Lavras, 2015.
dc.identifier.uri.fl_str_mv https://repositorio.ufla.br/handle/1/9410
identifier_str_mv SOUZA, C. G. Uso de séries temporais para o mapeamento da cafeicultura. 2015. 162 p. Tese (Doutorado em Engenharia Florestal)-Universidade Federal de Lavras, Lavras, 2015.
url https://repositorio.ufla.br/handle/1/9410
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv UNIVERSIDADE FEDERAL DE LAVRAS
dc.publisher.program.fl_str_mv DCF - Departamento de Ciências Florestais
dc.publisher.initials.fl_str_mv UFLA
dc.publisher.country.fl_str_mv BRASIL
publisher.none.fl_str_mv UNIVERSIDADE FEDERAL DE LAVRAS
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
bitstream.url.fl_str_mv https://repositorio.ufla.br/bitstreams/bccb1e0d-8a36-4a99-947e-efd07f1ccb62/download
https://repositorio.ufla.br/bitstreams/9ab26631-de8a-473c-bdb4-29b16e0cf8e2/download
https://repositorio.ufla.br/bitstreams/c0ba0f10-0465-4579-afd5-58fefd370dc5/download
https://repositorio.ufla.br/bitstreams/9a5141a1-c3d4-48a9-aef9-90590cab7fea/download
bitstream.checksum.fl_str_mv 760884c1e72224de569e74f79eb87ce3
04086a3891e48182148ad9d6a185447b
6fae0d957d194dd4e4a2d543563872f2
03df68582cfc97bf562ecf262283c7c0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1854947718117457920