Uso de séries temporais para o mapeamento da cafeicultura
| Ano de defesa: | 2015 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | , , , |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
UNIVERSIDADE FEDERAL DE LAVRAS
|
| Programa de Pós-Graduação: |
DCF - Departamento de Ciências Florestais
|
| Departamento: |
Não Informado pela instituição
|
| País: |
BRASIL
|
| Palavras-chave em Português: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.ufla.br/handle/1/9410 |
Resumo: | Coffee is one of the main agricultural activities, with great importance in Brazil and in the world, being the State of Minas the largest coffee producer in the country. Estimate the basic data from this culture correctly is a challenge, once obtaining such information have little detail and the sector is still missing accurate information. Geotechnologies has been promising to fill this gap, evaluating more correctly the dynamics of coffee. However, the mapping of these areas is still a difficult task, since these areas are too complex to map, presenting a high confusion among the targets. To meet this need, the goal this study was to propose a methodology for mapping of coffee, by multispectral and multi-temporal variables. The study was conducted in two distinct areas, which are located in the State of Minas Gerais, the first one in the South region and the second in the Midwest region of the State. Firstly, classifications was performed, using high-resolution satellite imagery RapidEye, testing different machine learning algorithms and the combination of different variables (spectral, geometrical and textural) in the classification process. The results showed that the Suport Vector Machine algorithm achieved the best results in the rankings for all areas, with overall accuracy of 88.33%. The textural variables when associated with spectral, improved a little accuracy, however, there was not significant difference when the ratings were compared. Although the results have been shown with good levels of accuracy, yet there was much confusion between classes. To overcome this gap, we proposed a new method for mapping using data as variables multi-temporal in the classification process. The results showed that using the multi-temporal variables, integrated the spectral variables, obtained overall accuracy of 93% and reduced significantly the confusion among the targets, making more precise classification process. The methodology proposed in this study was efficient to map coffee areas. |
| id |
UFLA_9aa6fcd55ba20e5963e3686419175f90 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufla.br:1/9410 |
| network_acronym_str |
UFLA |
| network_name_str |
Repositório Institucional da UFLA |
| repository_id_str |
|
| spelling |
2015-05-08T19:12:28Z2015-05-08T19:12:28Z2015-05-082015-02-24SOUZA, C. G. Uso de séries temporais para o mapeamento da cafeicultura. 2015. 162 p. Tese (Doutorado em Engenharia Florestal)-Universidade Federal de Lavras, Lavras, 2015.https://repositorio.ufla.br/handle/1/9410Coffee is one of the main agricultural activities, with great importance in Brazil and in the world, being the State of Minas the largest coffee producer in the country. Estimate the basic data from this culture correctly is a challenge, once obtaining such information have little detail and the sector is still missing accurate information. Geotechnologies has been promising to fill this gap, evaluating more correctly the dynamics of coffee. However, the mapping of these areas is still a difficult task, since these areas are too complex to map, presenting a high confusion among the targets. To meet this need, the goal this study was to propose a methodology for mapping of coffee, by multispectral and multi-temporal variables. The study was conducted in two distinct areas, which are located in the State of Minas Gerais, the first one in the South region and the second in the Midwest region of the State. Firstly, classifications was performed, using high-resolution satellite imagery RapidEye, testing different machine learning algorithms and the combination of different variables (spectral, geometrical and textural) in the classification process. The results showed that the Suport Vector Machine algorithm achieved the best results in the rankings for all areas, with overall accuracy of 88.33%. The textural variables when associated with spectral, improved a little accuracy, however, there was not significant difference when the ratings were compared. Although the results have been shown with good levels of accuracy, yet there was much confusion between classes. To overcome this gap, we proposed a new method for mapping using data as variables multi-temporal in the classification process. The results showed that using the multi-temporal variables, integrated the spectral variables, obtained overall accuracy of 93% and reduced significantly the confusion among the targets, making more precise classification process. The methodology proposed in this study was efficient to map coffee areas.A cafeicultura representa uma das principais atividades agrícolas, com grande importância no Brasil e no mundo, sendo o estado de Minas Gerais o maior produtor de café do país. Estimar os dados básicos desta cultura corretamente é um desafio, uma vez que as informações obtidas são pouco detalhadas e o setor ainda é carente de dados precisos. As geotecnologias têm sido promissoras para suprir esta lacuna, avaliando de forma mais precisa a dinâmica da cafeicultura. Porém, o mapeamento dessas áreas ainda é uma tarefa difícil, uma vez que elas são muito complexas de serem mapeadas, apresentando uma alta confusão entre os alvos. Para suprir esta necessidade, este trabalho foi realizado com o objetivo geral de propor uma metodologia para o mapeamento da cafeicultura, por meio de variáveis multiespectrais e multitemporais. O estudo foi conduzido em duas áreas distintas do estado de Minas Gerais, uma na região sul e a outra na região centro-oeste. Primeiramente, foram realizadas classificações, utilizando imagens de alta resolução do satélite RapidEye, testando diferentes algoritmos de aprendizagem de máquina e a combinação de diferentes variáveis (espectrais, geométricas e texturais) no processo de classificação. Os resultados mostraram que o algoritmo Support Vector Machine obteve os melhores resultados nas classificações para todas as áreas, com acurácia global de 88,33%. As variáveis texturais, quando associadas às espectrais, melhoraram a acurácia da classificação, porém, não houve diferença significativa entre as classificações. Apesar de os resultados terem se mostrado com bons índices de acerto, ainda houve muita confusão entre as classes. Foi proposto um novo método de mapeamento, utilizando dados multitemporais como variáveis no processo de classificação. Os resultados mostraram que os índices de acerto utilizando as variáveis multitemporais, integrados a variáveis espectrais, apresentaram índices de acurácia global de 93,00% e diminuíram significativamente a confusão entre os alvos, tornando o processo de classificação mais preciso. A metodologia proposta neste estudo mostrou eficiência no mapeamento de áreas cafeeiras.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Manejo FlorestalUNIVERSIDADE FEDERAL DE LAVRASDCF - Departamento de Ciências FlorestaisUFLABRASILCNPQ_NÃO_INFORMADOCaféClassificação de imagensSensoriamento remotoAlgoritmos de aprendizagem de máquinaGreenbownCoffeeImage classificationRemote sensingMachine learning algorithmsGreenbrownUso de séries temporais para o mapeamento da cafeiculturainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisCarvalho, Luis Marcelo Tavares deVolpato, Margarete Marin LodeloAlves, Helena Maria RamosOliveira, Luicano Teixeira deSuzuki, Ludmila ZambaldiSouza, Carolina Gusmãoinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLALICENSElicense.txtlicense.txttext/plain; charset=utf-8953https://repositorio.ufla.br/bitstreams/bccb1e0d-8a36-4a99-947e-efd07f1ccb62/download760884c1e72224de569e74f79eb87ce3MD51falseAnonymousREADORIGINALTESE_Uso de séries temporais para o mapeamento da cafeicultura.pdfTESE_Uso de séries temporais para o mapeamento da cafeicultura.pdfapplication/pdf3348603https://repositorio.ufla.br/bitstreams/9ab26631-de8a-473c-bdb4-29b16e0cf8e2/download04086a3891e48182148ad9d6a185447bMD52trueAnonymousREADTEXTTESE_Uso de séries temporais para o mapeamento da cafeicultura.pdf.txtTESE_Uso de séries temporais para o mapeamento da cafeicultura.pdf.txtExtracted texttext/plain102465https://repositorio.ufla.br/bitstreams/c0ba0f10-0465-4579-afd5-58fefd370dc5/download6fae0d957d194dd4e4a2d543563872f2MD53falseAnonymousREADTHUMBNAILTESE_Uso de séries temporais para o mapeamento da cafeicultura.pdf.jpgTESE_Uso de séries temporais para o mapeamento da cafeicultura.pdf.jpgGenerated Thumbnailimage/jpeg2936https://repositorio.ufla.br/bitstreams/9a5141a1-c3d4-48a9-aef9-90590cab7fea/download03df68582cfc97bf562ecf262283c7c0MD54falseAnonymousREAD1/94102025-08-06 11:09:10.066open.accessoai:repositorio.ufla.br:1/9410https://repositorio.ufla.brRepositório InstitucionalPUBhttps://repositorio.ufla.br/server/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2025-08-06T14:09:10Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)falseREVDTEFSQcOHw4NPIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCk8gcmVmZXJpZG8gYXV0b3I6CmEpIERlY2xhcmEgcXVlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIMOpIHNldSB0cmFiYWxobyBvcmlnaW5hbCwgZSBxdWUKZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4KRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2UsIHRhbnRvIHF1YW50bwpsaGUgw6kgcG9zc8OtdmVsIHNhYmVyLCBvcyBkaXJlaXRvcyBkZSBxdWFscXVlciBvdXRyYSBwZXNzb2Egb3UKZW50aWRhZGUuCmIpIFNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIGNvbnTDqW0gbWF0ZXJpYWwgZG8gcXVhbCBuw6NvIGRldMOpbSBvcwpkaXJlaXRvcyBkZSBhdXRvciwgZGVjbGFyYSBxdWUgb2J0ZXZlIGF1dG9yaXphw6fDo28gZG8gZGV0ZW50b3IgZG9zCmRpcmVpdG9zIGRlIGF1dG9yIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgTGF2cmFzIG9zCmRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgY3Vqb3MKZGlyZWl0b3Mgc8OjbyBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbwpubyB0ZXh0byBvdSBjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLiBTZSBvIGRvY3VtZW50byBlbnRyZWd1ZSDDqQpiYXNlYWRvIGVtIHRyYWJhbGhvIGZpbmFuY2lhZG8gb3UgYXBvaWFkbyBwb3Igb3V0cmEgaW5zdGl0dWnDp8OjbyBxdWUKbsOjbyBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIExhdnJhcywgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIKb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgo= |
| dc.title.pt_BR.fl_str_mv |
Uso de séries temporais para o mapeamento da cafeicultura |
| title |
Uso de séries temporais para o mapeamento da cafeicultura |
| spellingShingle |
Uso de séries temporais para o mapeamento da cafeicultura Souza, Carolina Gusmão CNPQ_NÃO_INFORMADO Café Classificação de imagens Sensoriamento remoto Algoritmos de aprendizagem de máquina Greenbown Coffee Image classification Remote sensing Machine learning algorithms Greenbrown |
| title_short |
Uso de séries temporais para o mapeamento da cafeicultura |
| title_full |
Uso de séries temporais para o mapeamento da cafeicultura |
| title_fullStr |
Uso de séries temporais para o mapeamento da cafeicultura |
| title_full_unstemmed |
Uso de séries temporais para o mapeamento da cafeicultura |
| title_sort |
Uso de séries temporais para o mapeamento da cafeicultura |
| author |
Souza, Carolina Gusmão |
| author_facet |
Souza, Carolina Gusmão |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
Carvalho, Luis Marcelo Tavares de |
| dc.contributor.referee1.fl_str_mv |
Volpato, Margarete Marin Lodelo Alves, Helena Maria Ramos Oliveira, Luicano Teixeira de Suzuki, Ludmila Zambaldi |
| dc.contributor.author.fl_str_mv |
Souza, Carolina Gusmão |
| contributor_str_mv |
Carvalho, Luis Marcelo Tavares de Volpato, Margarete Marin Lodelo Alves, Helena Maria Ramos Oliveira, Luicano Teixeira de Suzuki, Ludmila Zambaldi |
| dc.subject.cnpq.fl_str_mv |
CNPQ_NÃO_INFORMADO |
| topic |
CNPQ_NÃO_INFORMADO Café Classificação de imagens Sensoriamento remoto Algoritmos de aprendizagem de máquina Greenbown Coffee Image classification Remote sensing Machine learning algorithms Greenbrown |
| dc.subject.por.fl_str_mv |
Café Classificação de imagens Sensoriamento remoto Algoritmos de aprendizagem de máquina Greenbown Coffee Image classification Remote sensing Machine learning algorithms Greenbrown |
| description |
Coffee is one of the main agricultural activities, with great importance in Brazil and in the world, being the State of Minas the largest coffee producer in the country. Estimate the basic data from this culture correctly is a challenge, once obtaining such information have little detail and the sector is still missing accurate information. Geotechnologies has been promising to fill this gap, evaluating more correctly the dynamics of coffee. However, the mapping of these areas is still a difficult task, since these areas are too complex to map, presenting a high confusion among the targets. To meet this need, the goal this study was to propose a methodology for mapping of coffee, by multispectral and multi-temporal variables. The study was conducted in two distinct areas, which are located in the State of Minas Gerais, the first one in the South region and the second in the Midwest region of the State. Firstly, classifications was performed, using high-resolution satellite imagery RapidEye, testing different machine learning algorithms and the combination of different variables (spectral, geometrical and textural) in the classification process. The results showed that the Suport Vector Machine algorithm achieved the best results in the rankings for all areas, with overall accuracy of 88.33%. The textural variables when associated with spectral, improved a little accuracy, however, there was not significant difference when the ratings were compared. Although the results have been shown with good levels of accuracy, yet there was much confusion between classes. To overcome this gap, we proposed a new method for mapping using data as variables multi-temporal in the classification process. The results showed that using the multi-temporal variables, integrated the spectral variables, obtained overall accuracy of 93% and reduced significantly the confusion among the targets, making more precise classification process. The methodology proposed in this study was efficient to map coffee areas. |
| publishDate |
2015 |
| dc.date.submitted.none.fl_str_mv |
2015-02-24 |
| dc.date.accessioned.fl_str_mv |
2015-05-08T19:12:28Z |
| dc.date.available.fl_str_mv |
2015-05-08T19:12:28Z |
| dc.date.issued.fl_str_mv |
2015-05-08 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
SOUZA, C. G. Uso de séries temporais para o mapeamento da cafeicultura. 2015. 162 p. Tese (Doutorado em Engenharia Florestal)-Universidade Federal de Lavras, Lavras, 2015. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufla.br/handle/1/9410 |
| identifier_str_mv |
SOUZA, C. G. Uso de séries temporais para o mapeamento da cafeicultura. 2015. 162 p. Tese (Doutorado em Engenharia Florestal)-Universidade Federal de Lavras, Lavras, 2015. |
| url |
https://repositorio.ufla.br/handle/1/9410 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
UNIVERSIDADE FEDERAL DE LAVRAS |
| dc.publisher.program.fl_str_mv |
DCF - Departamento de Ciências Florestais |
| dc.publisher.initials.fl_str_mv |
UFLA |
| dc.publisher.country.fl_str_mv |
BRASIL |
| publisher.none.fl_str_mv |
UNIVERSIDADE FEDERAL DE LAVRAS |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
| instname_str |
Universidade Federal de Lavras (UFLA) |
| instacron_str |
UFLA |
| institution |
UFLA |
| reponame_str |
Repositório Institucional da UFLA |
| collection |
Repositório Institucional da UFLA |
| bitstream.url.fl_str_mv |
https://repositorio.ufla.br/bitstreams/bccb1e0d-8a36-4a99-947e-efd07f1ccb62/download https://repositorio.ufla.br/bitstreams/9ab26631-de8a-473c-bdb4-29b16e0cf8e2/download https://repositorio.ufla.br/bitstreams/c0ba0f10-0465-4579-afd5-58fefd370dc5/download https://repositorio.ufla.br/bitstreams/9a5141a1-c3d4-48a9-aef9-90590cab7fea/download |
| bitstream.checksum.fl_str_mv |
760884c1e72224de569e74f79eb87ce3 04086a3891e48182148ad9d6a185447b 6fae0d957d194dd4e4a2d543563872f2 03df68582cfc97bf562ecf262283c7c0 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
| repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
| _version_ |
1854947718117457920 |