Inteligência artificial para a autenticação de condutores: uma abordagem utilizando redes neurais siamesas

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Souza, Andrey Gustavo de
Orientador(a): Lacerda, Wilian Soares
Banca de defesa: Lacerda, Wilian Soares, Ferreira, Danton Diego, Campos, Gustavo Lobato
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Lavras
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia de Sistemas e Automação
Departamento: Departamento de Engenharia
País: brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufla.br/handle/1/36883
Resumo: O problema crônico de roubos e furtos de veículos em todo mundo, e especialmente no Bra- sil, tem crescido consideravelmente nos últimos anos. Em paralelo à esse problema, cada vez mais o uso de dados tem revolucionado diversos segmentos do mercado por meio de aplicações de técnicas de inteligência computacional para tarefas antes difíceis de serem solucionadas por meio de algoritmos tradicionais. Ciente desta realidade, este trabalho visa o desenvolvimento de um sistema de autenticação de condutores baseado em inteligência artificial, que faz uso de dados proprioceptivos do veículo, obtidos por meio da porta OBDII e de sensores inerci- ais de smartphones. Diferentes de outras abordagens que adotam essa temática na literatura, o presente trabalho foca na autenticação de condutores que não foram usados no treinamento do modelo em questão. Para tal, o uso de redes neurais siamesas é explorado para a tarefa de autenticação de condutores diante da limitação imposta. Redes neurais siamesas são conhecidas pelo seu desempenho em aplicações que envolvem identificação de indivíduos, como em reco- nhecimento facial, mesmo em situações em que se tenha somente poucos dados do indivíduo o qual se queira autenticar. A metodologia adotada explora a capacidade dessas redes de criar embeddings dos dados de indivíduos para efetuar sua posterior autenticação com técnicas ba- seadas em distância, formando uma função de decisão. Também é explorado o uso de técnicas de filtragem e extração de características, nesse caso o uso de janelas deslizantes que fomentam o desempenho dos resultados da rede neural siamesa. Essa combinação de técnicas de proces- samento de dados e técnicas de inteligência computacional obteve bons resultados na tarefa de autenticação de condutores, mesmo para os dados que não foram utilizados no treinamento da rede neural siamesa. Obteve-se uma ROC-AUC superior à 99% nos experimentos executados, o que indica boa aptidão das redes neurais siamesas para a tarefa de autenticação de condutores.
id UFLA_ce5b955f0f97eeaae603c8f7570d3c76
oai_identifier_str oai:repositorio.ufla.br:1/36883
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling 2019-09-23T17:16:46Z2019-09-23T17:16:46Z2019-09-232019-07-12SOUZA, A. G. de. Inteligência artificial para a autenticação de condutores: uma abordagem utilizando redes neurais siamesas. 2019. 75 p. Dissertação (Mestrado em Engenharia de Sistemas e Automação) - Universidade Federal de Lavras, Lavras, 2019.https://repositorio.ufla.br/handle/1/36883O problema crônico de roubos e furtos de veículos em todo mundo, e especialmente no Bra- sil, tem crescido consideravelmente nos últimos anos. Em paralelo à esse problema, cada vez mais o uso de dados tem revolucionado diversos segmentos do mercado por meio de aplicações de técnicas de inteligência computacional para tarefas antes difíceis de serem solucionadas por meio de algoritmos tradicionais. Ciente desta realidade, este trabalho visa o desenvolvimento de um sistema de autenticação de condutores baseado em inteligência artificial, que faz uso de dados proprioceptivos do veículo, obtidos por meio da porta OBDII e de sensores inerci- ais de smartphones. Diferentes de outras abordagens que adotam essa temática na literatura, o presente trabalho foca na autenticação de condutores que não foram usados no treinamento do modelo em questão. Para tal, o uso de redes neurais siamesas é explorado para a tarefa de autenticação de condutores diante da limitação imposta. Redes neurais siamesas são conhecidas pelo seu desempenho em aplicações que envolvem identificação de indivíduos, como em reco- nhecimento facial, mesmo em situações em que se tenha somente poucos dados do indivíduo o qual se queira autenticar. A metodologia adotada explora a capacidade dessas redes de criar embeddings dos dados de indivíduos para efetuar sua posterior autenticação com técnicas ba- seadas em distância, formando uma função de decisão. Também é explorado o uso de técnicas de filtragem e extração de características, nesse caso o uso de janelas deslizantes que fomentam o desempenho dos resultados da rede neural siamesa. Essa combinação de técnicas de proces- samento de dados e técnicas de inteligência computacional obteve bons resultados na tarefa de autenticação de condutores, mesmo para os dados que não foram utilizados no treinamento da rede neural siamesa. Obteve-se uma ROC-AUC superior à 99% nos experimentos executados, o que indica boa aptidão das redes neurais siamesas para a tarefa de autenticação de condutores.The chronic problem of vehicle theft and robbery worldwide, and especially in Brazil, has grown considerably in recent years. In parallel with this problem, the increasingly abundant use of data has revolutionized various segments of the market through applications of computati- onal intelligence techniques for tasks previously difficult to solve using traditional algorithms. Aware of this reality, this work aims to develop a system based on an artificial intelligence model of driver authentication, which makes use of vehicle’s proprioceptive data, obtained th- rough the on-board diagnostics interface (OBDII) and inertial sensors present in smartphones. Different from other approaches that adopt this theme in the literature, the present work aims the authentication of drivers that were not used during the training step of the current model. For this, we used siamese neural networks for the driver’s authentication task to deal with this imposed limitation. Siamese neural networks are known for their performance in applications involving people identification, such as face recognition, even in situations where only few data are available for authentication. The adopted methodology exploits the ability of these networks to create embeddings from individuals’ data to carry out their later authentication through tech- niques based on distance, forming a decision function. It is also explored filtering techniques and features extraction, in this case, the use of sliding windows, which improves the perfor- mance of the siamese neural network. This combination of data processing and computational intelligence techniques has well performed the driver authentication task, even when the data have not been used for the Siamese neural network training. A ROC-AUC greater than 99 per- cent was obtained in real experiments, which indicates a good suitability of the siamese neural networks for the drivers’ authentication task.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade Federal de LavrasPrograma de Pós-Graduação em Engenharia de Sistemas e AutomaçãoUFLAbrasilDepartamento de EngenhariaEngenhariasAutenticação de condutoresDados veicularesRedes neurais artificiaisRedes siamesasIdentificação comportamental de condutoresDrivers’ authenticationVehicle dataArtificial neural networksSiamese networksDrivers’ behavior identificationInteligência artificial para a autenticação de condutores: uma abordagem utilizando redes neurais siamesasArtificial intelligence for drivers authentication: an approach using siamese neural networksinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisLacerda, Wilian SoaresLima, Danilo Alves deLacerda, Wilian SoaresFerreira, Danton DiegoCampos, Gustavo LobatoSouza, Andrey Gustavo deinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAORIGINALDISSERTAÇÃO_Inteligência artificial para a autenticação de condutores: uma abordagem utilizando redes neurais siamesas.pdfDISSERTAÇÃO_Inteligência artificial para a autenticação de condutores: uma abordagem utilizando redes neurais siamesas.pdfapplication/pdf3611161https://repositorio.ufla.br/bitstreams/19bd9dcc-5ddc-4159-acc9-6235ab147fec/download02a66f147cab0ba755f3903618c00086MD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-8953https://repositorio.ufla.br/bitstreams/24165037-3008-4cc7-a1c6-db051729fd92/download760884c1e72224de569e74f79eb87ce3MD52falseAnonymousREADTEXTDISSERTAÇÃO_Inteligência artificial para a autenticação de condutores: uma abordagem utilizando redes neurais siamesas.pdf.txtDISSERTAÇÃO_Inteligência artificial para a autenticação de condutores: uma abordagem utilizando redes neurais siamesas.pdf.txtExtracted texttext/plain103174https://repositorio.ufla.br/bitstreams/71ec08cc-d722-43ac-a13e-26f4a895f461/download58263554f7069e6051aaa891c90b1371MD53falseAnonymousREADTHUMBNAILDISSERTAÇÃO_Inteligência artificial para a autenticação de condutores: uma abordagem utilizando redes neurais siamesas.pdf.jpgDISSERTAÇÃO_Inteligência artificial para a autenticação de condutores: uma abordagem utilizando redes neurais siamesas.pdf.jpgGenerated Thumbnailimage/jpeg3284https://repositorio.ufla.br/bitstreams/a2cedf3d-bb2d-4ff0-832a-9e7c54b3374b/downloadc462604d79085cecd807a28ee98ba0dbMD54falseAnonymousREAD1/368832025-08-19 09:56:33.833open.accessoai:repositorio.ufla.br:1/36883https://repositorio.ufla.brRepositório InstitucionalPUBhttps://repositorio.ufla.br/server/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2025-08-19T12:56:33Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)falseREVDTEFSQcOHw4NPIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCk8gcmVmZXJpZG8gYXV0b3I6CmEpIERlY2xhcmEgcXVlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIMOpIHNldSB0cmFiYWxobyBvcmlnaW5hbCwgZSBxdWUKZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4KRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2UsIHRhbnRvIHF1YW50bwpsaGUgw6kgcG9zc8OtdmVsIHNhYmVyLCBvcyBkaXJlaXRvcyBkZSBxdWFscXVlciBvdXRyYSBwZXNzb2Egb3UKZW50aWRhZGUuCmIpIFNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIGNvbnTDqW0gbWF0ZXJpYWwgZG8gcXVhbCBuw6NvIGRldMOpbSBvcwpkaXJlaXRvcyBkZSBhdXRvciwgZGVjbGFyYSBxdWUgb2J0ZXZlIGF1dG9yaXphw6fDo28gZG8gZGV0ZW50b3IgZG9zCmRpcmVpdG9zIGRlIGF1dG9yIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgTGF2cmFzIG9zCmRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgY3Vqb3MKZGlyZWl0b3Mgc8OjbyBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbwpubyB0ZXh0byBvdSBjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLiBTZSBvIGRvY3VtZW50byBlbnRyZWd1ZSDDqQpiYXNlYWRvIGVtIHRyYWJhbGhvIGZpbmFuY2lhZG8gb3UgYXBvaWFkbyBwb3Igb3V0cmEgaW5zdGl0dWnDp8OjbyBxdWUKbsOjbyBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIExhdnJhcywgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIKb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgo=
dc.title.pt_BR.fl_str_mv Inteligência artificial para a autenticação de condutores: uma abordagem utilizando redes neurais siamesas
dc.title.alternative.pt_BR.fl_str_mv Artificial intelligence for drivers authentication: an approach using siamese neural networks
title Inteligência artificial para a autenticação de condutores: uma abordagem utilizando redes neurais siamesas
spellingShingle Inteligência artificial para a autenticação de condutores: uma abordagem utilizando redes neurais siamesas
Souza, Andrey Gustavo de
Engenharias
Autenticação de condutores
Dados veiculares
Redes neurais artificiais
Redes siamesas
Identificação comportamental de condutores
Drivers’ authentication
Vehicle data
Artificial neural networks
Siamese networks
Drivers’ behavior identification
title_short Inteligência artificial para a autenticação de condutores: uma abordagem utilizando redes neurais siamesas
title_full Inteligência artificial para a autenticação de condutores: uma abordagem utilizando redes neurais siamesas
title_fullStr Inteligência artificial para a autenticação de condutores: uma abordagem utilizando redes neurais siamesas
title_full_unstemmed Inteligência artificial para a autenticação de condutores: uma abordagem utilizando redes neurais siamesas
title_sort Inteligência artificial para a autenticação de condutores: uma abordagem utilizando redes neurais siamesas
author Souza, Andrey Gustavo de
author_facet Souza, Andrey Gustavo de
author_role author
dc.contributor.advisor1.fl_str_mv Lacerda, Wilian Soares
dc.contributor.advisor-co1.fl_str_mv Lima, Danilo Alves de
dc.contributor.referee1.fl_str_mv Lacerda, Wilian Soares
dc.contributor.referee2.fl_str_mv Ferreira, Danton Diego
dc.contributor.referee3.fl_str_mv Campos, Gustavo Lobato
dc.contributor.author.fl_str_mv Souza, Andrey Gustavo de
contributor_str_mv Lacerda, Wilian Soares
Lima, Danilo Alves de
Lacerda, Wilian Soares
Ferreira, Danton Diego
Campos, Gustavo Lobato
dc.subject.cnpq.fl_str_mv Engenharias
topic Engenharias
Autenticação de condutores
Dados veiculares
Redes neurais artificiais
Redes siamesas
Identificação comportamental de condutores
Drivers’ authentication
Vehicle data
Artificial neural networks
Siamese networks
Drivers’ behavior identification
dc.subject.por.fl_str_mv Autenticação de condutores
Dados veiculares
Redes neurais artificiais
Redes siamesas
Identificação comportamental de condutores
Drivers’ authentication
Vehicle data
Artificial neural networks
Siamese networks
Drivers’ behavior identification
description O problema crônico de roubos e furtos de veículos em todo mundo, e especialmente no Bra- sil, tem crescido consideravelmente nos últimos anos. Em paralelo à esse problema, cada vez mais o uso de dados tem revolucionado diversos segmentos do mercado por meio de aplicações de técnicas de inteligência computacional para tarefas antes difíceis de serem solucionadas por meio de algoritmos tradicionais. Ciente desta realidade, este trabalho visa o desenvolvimento de um sistema de autenticação de condutores baseado em inteligência artificial, que faz uso de dados proprioceptivos do veículo, obtidos por meio da porta OBDII e de sensores inerci- ais de smartphones. Diferentes de outras abordagens que adotam essa temática na literatura, o presente trabalho foca na autenticação de condutores que não foram usados no treinamento do modelo em questão. Para tal, o uso de redes neurais siamesas é explorado para a tarefa de autenticação de condutores diante da limitação imposta. Redes neurais siamesas são conhecidas pelo seu desempenho em aplicações que envolvem identificação de indivíduos, como em reco- nhecimento facial, mesmo em situações em que se tenha somente poucos dados do indivíduo o qual se queira autenticar. A metodologia adotada explora a capacidade dessas redes de criar embeddings dos dados de indivíduos para efetuar sua posterior autenticação com técnicas ba- seadas em distância, formando uma função de decisão. Também é explorado o uso de técnicas de filtragem e extração de características, nesse caso o uso de janelas deslizantes que fomentam o desempenho dos resultados da rede neural siamesa. Essa combinação de técnicas de proces- samento de dados e técnicas de inteligência computacional obteve bons resultados na tarefa de autenticação de condutores, mesmo para os dados que não foram utilizados no treinamento da rede neural siamesa. Obteve-se uma ROC-AUC superior à 99% nos experimentos executados, o que indica boa aptidão das redes neurais siamesas para a tarefa de autenticação de condutores.
publishDate 2019
dc.date.submitted.none.fl_str_mv 2019-07-12
dc.date.accessioned.fl_str_mv 2019-09-23T17:16:46Z
dc.date.available.fl_str_mv 2019-09-23T17:16:46Z
dc.date.issued.fl_str_mv 2019-09-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SOUZA, A. G. de. Inteligência artificial para a autenticação de condutores: uma abordagem utilizando redes neurais siamesas. 2019. 75 p. Dissertação (Mestrado em Engenharia de Sistemas e Automação) - Universidade Federal de Lavras, Lavras, 2019.
dc.identifier.uri.fl_str_mv https://repositorio.ufla.br/handle/1/36883
identifier_str_mv SOUZA, A. G. de. Inteligência artificial para a autenticação de condutores: uma abordagem utilizando redes neurais siamesas. 2019. 75 p. Dissertação (Mestrado em Engenharia de Sistemas e Automação) - Universidade Federal de Lavras, Lavras, 2019.
url https://repositorio.ufla.br/handle/1/36883
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Lavras
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia de Sistemas e Automação
dc.publisher.initials.fl_str_mv UFLA
dc.publisher.country.fl_str_mv brasil
dc.publisher.department.fl_str_mv Departamento de Engenharia
publisher.none.fl_str_mv Universidade Federal de Lavras
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
bitstream.url.fl_str_mv https://repositorio.ufla.br/bitstreams/19bd9dcc-5ddc-4159-acc9-6235ab147fec/download
https://repositorio.ufla.br/bitstreams/24165037-3008-4cc7-a1c6-db051729fd92/download
https://repositorio.ufla.br/bitstreams/71ec08cc-d722-43ac-a13e-26f4a895f461/download
https://repositorio.ufla.br/bitstreams/a2cedf3d-bb2d-4ff0-832a-9e7c54b3374b/download
bitstream.checksum.fl_str_mv 02a66f147cab0ba755f3903618c00086
760884c1e72224de569e74f79eb87ce3
58263554f7069e6051aaa891c90b1371
c462604d79085cecd807a28ee98ba0db
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1854947736329125888