Reconhecimento de Língua de Sinais Baseado em Redes Neurais Convolucionais 3D.

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: RAMOS NETO, Geovane Menezes lattes
Orientador(a): BRAZ JÚNIOR, Geraldo lattes
Banca de defesa: BRAZ JÚNIOR, Geraldo lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Maranhão
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCET
Departamento: DEPARTAMENTO DE INFORMÁTICA/CCET
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://tedebc.ufma.br/jspui/handle/tede/2361
Resumo: The need to use a visual language code makes the development of hearing impaired individuals difficult. This difficulty is explained by the low number of people who are fluent in a sign language, limiting the inclusion of the hearing impaired. The current solutions for communication between people without the domain of sign language and the hearing impaired are the use of human translators, which are expensive resources due to the necessary professional experience. This study presents a methodology that uses computer vision and machine learning techniques to recognize signals from the Sign Language of Argentina. The recognition takes place through the use of a 3D Convolutional Neural Network architecture, which was built through the selection of the parameters that provided the best results among the tests performed. For validation, we use the LSA64 video base, which contains 64 signs of the Sign Language Argentina. The best architecture achieved an average accuracy of 94.22% which, when compared to related works, proved to be a promising methodology in the automatic recognition of sign languages.
id UFMA_240562e095e3f6db9844e4a8d91c5b15
oai_identifier_str oai:tede2:tede/2361
network_acronym_str UFMA
network_name_str Biblioteca Digital de Teses e Dissertações da UFMA
repository_id_str
spelling BRAZ JÚNIOR, Geraldo000.520.303-18http://lattes.cnpq.br/8287861610873629BRAZ JÚNIOR, Geraldo000.520.303-18http://lattes.cnpq.br/8287861610873629051.368.693-21http://lattes.cnpq.br/1715603724925516RAMOS NETO, Geovane Menezes2018-09-03T12:14:00Z2018-07-26RAMOS NETO, Geovane Menezes. Reconhecimento de Língua de Sinais Baseado em Redes Neurais Convolucionais 3D.. 2018. 54 folhas. Dissertação( Programa de Pós-Graduação em Ciência da Computação/CCET) - Universidade Federal do Maranhão, São Luís.https://tedebc.ufma.br/jspui/handle/tede/2361The need to use a visual language code makes the development of hearing impaired individuals difficult. This difficulty is explained by the low number of people who are fluent in a sign language, limiting the inclusion of the hearing impaired. The current solutions for communication between people without the domain of sign language and the hearing impaired are the use of human translators, which are expensive resources due to the necessary professional experience. This study presents a methodology that uses computer vision and machine learning techniques to recognize signals from the Sign Language of Argentina. The recognition takes place through the use of a 3D Convolutional Neural Network architecture, which was built through the selection of the parameters that provided the best results among the tests performed. For validation, we use the LSA64 video base, which contains 64 signs of the Sign Language Argentina. The best architecture achieved an average accuracy of 94.22% which, when compared to related works, proved to be a promising methodology in the automatic recognition of sign languages.A necessidade em utilizar um código linguístico prioritariamente visual dificulta o desenvolvimento de indivíduos com deficiência auditiva. Esta dificuldade é explicada pela baixa quantidade de pessoas fluentes em uma língua de sinais, limitando a inclusão dos deficientes auditivos. As soluções atuais para a comunicação entre pessoas sem o domínio de uma língua de sinais e deficientes auditivos são a utilização de tradutores humanos, que são recursos onerosos devido a experiência profissional necessária. Este estudo apresenta uma metodologia que utiliza técnicas de visão computacional e aprendizado de máquina para reconhecer sinais da Língua de Sinais Argentina. O reconhecimento se dá através da utilização de uma arquitetura 3D Convolutional Neural Network, que foi construída através da seleção dos parâmetros que forneceram os melhores resultados entre os testes realizados. Para a validação, utilizamos a base de vídeos LSA64, que contem 64 sinais da Língua de Sinais Argentina. A melhor arquitetura alcançou uma acurácia média de 94, 22% que, quando comparado a trabalhos relacionados, se mostrou uma metodologia promissora no reconhecimento automático de línguas de sinais.Submitted by Maria Aparecida (cidazen@gmail.com) on 2018-09-03T12:14:00Z No. of bitstreams: 1 Geovane Menezes Ramos Neto.pdf: 934928 bytes, checksum: c7dd57920e103708707501664947d90e (MD5)Made available in DSpace on 2018-09-03T12:14:00Z (GMT). No. of bitstreams: 1 Geovane Menezes Ramos Neto.pdf: 934928 bytes, checksum: c7dd57920e103708707501664947d90e (MD5) Previous issue date: 2018-07-26application/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCETUFMABrasilDEPARTAMENTO DE INFORMÁTICA/CCETReconhecimento de Língua de Sinais; Rede Neural Convolucional 3D; Aprendizado ProfundoSign Language Recognition; 3D Convolutional Neural Network; Deep LearningSistemas de Informação.Reconhecimento de Língua de Sinais Baseado em Redes Neurais Convolucionais 3D.Network Based Sign Language Recognition 3D Neural Convolutionals.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALGeovane Menezes Ramos Neto.pdfGeovane Menezes Ramos Neto.pdfapplication/pdf934928http://tedebc.ufma.br:8080/bitstream/tede/2361/2/Geovane+Menezes+Ramos+Neto.pdfc7dd57920e103708707501664947d90eMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/2361/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/23612018-09-03 09:14:00.705oai:tede2:tede/2361IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312018-09-03T12:14Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false
dc.title.por.fl_str_mv Reconhecimento de Língua de Sinais Baseado em Redes Neurais Convolucionais 3D.
dc.title.alternative.eng.fl_str_mv Network Based Sign Language Recognition 3D Neural Convolutionals.
title Reconhecimento de Língua de Sinais Baseado em Redes Neurais Convolucionais 3D.
spellingShingle Reconhecimento de Língua de Sinais Baseado em Redes Neurais Convolucionais 3D.
RAMOS NETO, Geovane Menezes
Reconhecimento de Língua de Sinais; Rede Neural Convolucional 3D; Aprendizado Profundo
Sign Language Recognition; 3D Convolutional Neural Network; Deep Learning
Sistemas de Informação.
title_short Reconhecimento de Língua de Sinais Baseado em Redes Neurais Convolucionais 3D.
title_full Reconhecimento de Língua de Sinais Baseado em Redes Neurais Convolucionais 3D.
title_fullStr Reconhecimento de Língua de Sinais Baseado em Redes Neurais Convolucionais 3D.
title_full_unstemmed Reconhecimento de Língua de Sinais Baseado em Redes Neurais Convolucionais 3D.
title_sort Reconhecimento de Língua de Sinais Baseado em Redes Neurais Convolucionais 3D.
author RAMOS NETO, Geovane Menezes
author_facet RAMOS NETO, Geovane Menezes
author_role author
dc.contributor.advisor1.fl_str_mv BRAZ JÚNIOR, Geraldo
dc.contributor.advisor1ID.fl_str_mv 000.520.303-18
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8287861610873629
dc.contributor.referee1.fl_str_mv BRAZ JÚNIOR, Geraldo
dc.contributor.referee1ID.fl_str_mv 000.520.303-18
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/8287861610873629
dc.contributor.authorID.fl_str_mv 051.368.693-21
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/1715603724925516
dc.contributor.author.fl_str_mv RAMOS NETO, Geovane Menezes
contributor_str_mv BRAZ JÚNIOR, Geraldo
BRAZ JÚNIOR, Geraldo
dc.subject.por.fl_str_mv Reconhecimento de Língua de Sinais; Rede Neural Convolucional 3D; Aprendizado Profundo
topic Reconhecimento de Língua de Sinais; Rede Neural Convolucional 3D; Aprendizado Profundo
Sign Language Recognition; 3D Convolutional Neural Network; Deep Learning
Sistemas de Informação.
dc.subject.eng.fl_str_mv Sign Language Recognition; 3D Convolutional Neural Network; Deep Learning
dc.subject.cnpq.fl_str_mv Sistemas de Informação.
description The need to use a visual language code makes the development of hearing impaired individuals difficult. This difficulty is explained by the low number of people who are fluent in a sign language, limiting the inclusion of the hearing impaired. The current solutions for communication between people without the domain of sign language and the hearing impaired are the use of human translators, which are expensive resources due to the necessary professional experience. This study presents a methodology that uses computer vision and machine learning techniques to recognize signals from the Sign Language of Argentina. The recognition takes place through the use of a 3D Convolutional Neural Network architecture, which was built through the selection of the parameters that provided the best results among the tests performed. For validation, we use the LSA64 video base, which contains 64 signs of the Sign Language Argentina. The best architecture achieved an average accuracy of 94.22% which, when compared to related works, proved to be a promising methodology in the automatic recognition of sign languages.
publishDate 2018
dc.date.accessioned.fl_str_mv 2018-09-03T12:14:00Z
dc.date.issued.fl_str_mv 2018-07-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv RAMOS NETO, Geovane Menezes. Reconhecimento de Língua de Sinais Baseado em Redes Neurais Convolucionais 3D.. 2018. 54 folhas. Dissertação( Programa de Pós-Graduação em Ciência da Computação/CCET) - Universidade Federal do Maranhão, São Luís.
dc.identifier.uri.fl_str_mv https://tedebc.ufma.br/jspui/handle/tede/2361
identifier_str_mv RAMOS NETO, Geovane Menezes. Reconhecimento de Língua de Sinais Baseado em Redes Neurais Convolucionais 3D.. 2018. 54 folhas. Dissertação( Programa de Pós-Graduação em Ciência da Computação/CCET) - Universidade Federal do Maranhão, São Luís.
url https://tedebc.ufma.br/jspui/handle/tede/2361
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.publisher.program.fl_str_mv PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCET
dc.publisher.initials.fl_str_mv UFMA
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv DEPARTAMENTO DE INFORMÁTICA/CCET
publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFMA
instname:Universidade Federal do Maranhão (UFMA)
instacron:UFMA
instname_str Universidade Federal do Maranhão (UFMA)
instacron_str UFMA
institution UFMA
reponame_str Biblioteca Digital de Teses e Dissertações da UFMA
collection Biblioteca Digital de Teses e Dissertações da UFMA
bitstream.url.fl_str_mv http://tedebc.ufma.br:8080/bitstream/tede/2361/2/Geovane+Menezes+Ramos+Neto.pdf
http://tedebc.ufma.br:8080/bitstream/tede/2361/1/license.txt
bitstream.checksum.fl_str_mv c7dd57920e103708707501664947d90e
97eeade1fce43278e63fe063657f8083
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)
repository.mail.fl_str_mv repositorio@ufma.br||repositorio@ufma.br
_version_ 1853507999775064064