Aprendizagem por Reforço e Programação Dinâmica Aproximada para Controle Ótimo: Uma Abordagem para o Projeto Online do Regulador Linear Quadrático Discreto com Programação Dinâmica Heurística Dependente de Estado e Ação.
| Ano de defesa: | 2014 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | , , , , |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal do Maranhão
|
| Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
|
| Departamento: |
DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | http://tedebc.ufma.br:8080/jspui/handle/tede/1879 |
Resumo: | In this thesis a proposal of an uni ed approach of dynamic programming, reinforcement learning and function approximation theories aiming at the development of methods and algorithms for design of optimal control systems is presented. This approach is presented in the approximate dynamic programming context that allows approximating the optimal feedback solution as to reduce the computational complexity associated to the conventional dynamic programming methods for optimal control of multivariable systems. Speci cally, in the state and action dependent heuristic dynamic programming framework, this proposal is oriented for the development of online approximated solutions, numerically stable, of the Riccati-type Hamilton-Jacobi-Bellman equation associated to the discrete linear quadratic regulator problem which is based on a formulation that combines value function estimates by means of a RLS (Recursive Least-Squares) structure, temporal di erences and policy improvements. The development of the proposed methodologies, in this work, is focused mainly on the UDU T factorization that is inserted in this framework to improve the RLS estimation process of optimal decision policies of the discrete linear quadratic regulator, by circumventing convergence and numerical stability problems related to the covariance matrix ill-conditioning of the RLS approach. |
| id |
UFMA_324aafd370940949abfc29ff33f3d289 |
|---|---|
| oai_identifier_str |
oai:tede2:tede/1879 |
| network_acronym_str |
UFMA |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
| repository_id_str |
|
| spelling |
FONSECA NETO, João Viana da21994790482http://lattes.cnpq.br/0029055473709795FONSECA NETO, João Viana daFREIRE, Raimundo Carlos Silvériohttp://lattes.cnpq.br/4016576596215504OLIVEIRA, Roberto Célio Limão dehttp://lattes.cnpq.br/4497607460894318SERRA, Ginalber Luiz de Oliveirahttp://lattes.cnpq.br/0831092299374520SOUZA, Francisco das Chagas dehttp://lattes.cnpq.br/2405363087479257706.797.033-49http://lattes.cnpq.br/6535271381344851RÊGO, Patrícia Helena Moraes2017-08-30T15:33:12Z2014-07-24RÊGO, Patrícia Helena Moraes. Aprendizagem por Reforço e Programação Dinâmica Aproximada para Controle Ótimo: Uma Abordagem para o Projeto Online do Regulador Linear Quadrático Discreto com Programação Dinâmica Heurística Dependente de Estado e Ação.. 2014. [328 folhas]. Tese( PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET) - Universidade Federal do Maranhão, [São Luis] .http://tedebc.ufma.br:8080/jspui/handle/tede/1879In this thesis a proposal of an uni ed approach of dynamic programming, reinforcement learning and function approximation theories aiming at the development of methods and algorithms for design of optimal control systems is presented. This approach is presented in the approximate dynamic programming context that allows approximating the optimal feedback solution as to reduce the computational complexity associated to the conventional dynamic programming methods for optimal control of multivariable systems. Speci cally, in the state and action dependent heuristic dynamic programming framework, this proposal is oriented for the development of online approximated solutions, numerically stable, of the Riccati-type Hamilton-Jacobi-Bellman equation associated to the discrete linear quadratic regulator problem which is based on a formulation that combines value function estimates by means of a RLS (Recursive Least-Squares) structure, temporal di erences and policy improvements. The development of the proposed methodologies, in this work, is focused mainly on the UDU T factorization that is inserted in this framework to improve the RLS estimation process of optimal decision policies of the discrete linear quadratic regulator, by circumventing convergence and numerical stability problems related to the covariance matrix ill-conditioning of the RLS approach.Apresenta-se nesta tese uma proposta de uma abordagem uni cada de teorias de programação dinâmica, aprendizagem por reforço e aproximação de função que tem por objetivo o desenvolvimento de métodos e algoritmos para projeto online de sistemas de controle ótimo. Esta abordagem é apresentada no contexto de programação dinâmica aproximada que permite aproximar a solução de realimentação ótima de modo a reduzir a complexidade computacional associada com métodos convencionais de programação dinâmica para controle ótimo de sistemas multivariáveis. Especi camente, no quadro de programação dinâmica heurística e programação dinâmica heurística dependente de ação, esta proposta é orientada para o desenvolvimento de soluções aproximadas online, numericamente estáveis, da equação de Hamilton-Jacobi-Bellman do tipo Riccati associada ao problema do regulador linear quadrático discreto que tem por base uma formulação que combina estimativas da função valor por meio de uma estrutura RLS (do inglês Recursive Least-Squares), diferenças temporais e melhorias de política. O desenvolvimento das metodologias propostas, neste trabalho, tem seu foco principal voltado para a fatoração UDU T que é inserida neste quadro para melhorar o processo de estimação RLS de políticas de decisão ótimas do regulador linear quadrá- tico discreto, contornando-se problemas de convergência e estabilidade numérica relacionados com o mal condicionamento da matriz de covariância da abordagem RLS.Submitted by Maria Aparecida (cidazen@gmail.com) on 2017-08-30T15:33:12Z No. of bitstreams: 1 Patricia Helena.pdf: 11110405 bytes, checksum: ca1f067231658f897d84b86181dbf1b9 (MD5)Made available in DSpace on 2017-08-30T15:33:12Z (GMT). No. of bitstreams: 1 Patricia Helena.pdf: 11110405 bytes, checksum: ca1f067231658f897d84b86181dbf1b9 (MD5) Previous issue date: 2014-07-24application/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCETUFMABrasilDEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCETProgramação Dinâmica; Aprendizagem por Reforço; Programação Dinâmica Heurística; Controle Multivariável; Controle Ótimo; Regulador Linear Quadrático Discreto; Mínimos Quadrados RecursivosDynamic Programming; Reinforcement Learning; Heuristic Dynamic Programming; Multivariable Control; Optimal Control; Discrete Linear Quadratic Regulator; Recursive Least-SquaresAnálise de Algoritmos e Complexidade de ComputaçãoAprendizagem por Reforço e Programação Dinâmica Aproximada para Controle Ótimo: Uma Abordagem para o Projeto Online do Regulador Linear Quadrático Discreto com Programação Dinâmica Heurística Dependente de Estado e Ação.Reinforcement and Programming Learning Approximate Dynamics for Optimal Control: An Approach to the Linear Regulator Online Project Discrete Quadratic with Heuristic Dynamic Programming Dependent on State and Action.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALPatricia Helena.pdfPatricia Helena.pdfapplication/pdf11110405http://tedebc.ufma.br:8080/bitstream/tede/1879/2/Patricia+Helena.pdfca1f067231658f897d84b86181dbf1b9MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/1879/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/18792017-12-07 13:57:41.872oai:tede2:tede/1879IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312017-12-07T16:57:41Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false |
| dc.title.por.fl_str_mv |
Aprendizagem por Reforço e Programação Dinâmica Aproximada para Controle Ótimo: Uma Abordagem para o Projeto Online do Regulador Linear Quadrático Discreto com Programação Dinâmica Heurística Dependente de Estado e Ação. |
| dc.title.alternative.eng.fl_str_mv |
Reinforcement and Programming Learning Approximate Dynamics for Optimal Control: An Approach to the Linear Regulator Online Project Discrete Quadratic with Heuristic Dynamic Programming Dependent on State and Action. |
| title |
Aprendizagem por Reforço e Programação Dinâmica Aproximada para Controle Ótimo: Uma Abordagem para o Projeto Online do Regulador Linear Quadrático Discreto com Programação Dinâmica Heurística Dependente de Estado e Ação. |
| spellingShingle |
Aprendizagem por Reforço e Programação Dinâmica Aproximada para Controle Ótimo: Uma Abordagem para o Projeto Online do Regulador Linear Quadrático Discreto com Programação Dinâmica Heurística Dependente de Estado e Ação. RÊGO, Patrícia Helena Moraes Programação Dinâmica; Aprendizagem por Reforço; Programação Dinâmica Heurística; Controle Multivariável; Controle Ótimo; Regulador Linear Quadrático Discreto; Mínimos Quadrados Recursivos Dynamic Programming; Reinforcement Learning; Heuristic Dynamic Programming; Multivariable Control; Optimal Control; Discrete Linear Quadratic Regulator; Recursive Least-Squares Análise de Algoritmos e Complexidade de Computação |
| title_short |
Aprendizagem por Reforço e Programação Dinâmica Aproximada para Controle Ótimo: Uma Abordagem para o Projeto Online do Regulador Linear Quadrático Discreto com Programação Dinâmica Heurística Dependente de Estado e Ação. |
| title_full |
Aprendizagem por Reforço e Programação Dinâmica Aproximada para Controle Ótimo: Uma Abordagem para o Projeto Online do Regulador Linear Quadrático Discreto com Programação Dinâmica Heurística Dependente de Estado e Ação. |
| title_fullStr |
Aprendizagem por Reforço e Programação Dinâmica Aproximada para Controle Ótimo: Uma Abordagem para o Projeto Online do Regulador Linear Quadrático Discreto com Programação Dinâmica Heurística Dependente de Estado e Ação. |
| title_full_unstemmed |
Aprendizagem por Reforço e Programação Dinâmica Aproximada para Controle Ótimo: Uma Abordagem para o Projeto Online do Regulador Linear Quadrático Discreto com Programação Dinâmica Heurística Dependente de Estado e Ação. |
| title_sort |
Aprendizagem por Reforço e Programação Dinâmica Aproximada para Controle Ótimo: Uma Abordagem para o Projeto Online do Regulador Linear Quadrático Discreto com Programação Dinâmica Heurística Dependente de Estado e Ação. |
| author |
RÊGO, Patrícia Helena Moraes |
| author_facet |
RÊGO, Patrícia Helena Moraes |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
FONSECA NETO, João Viana da |
| dc.contributor.advisor1ID.fl_str_mv |
21994790482 |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/0029055473709795 |
| dc.contributor.referee1.fl_str_mv |
FONSECA NETO, João Viana da |
| dc.contributor.referee2.fl_str_mv |
FREIRE, Raimundo Carlos Silvério |
| dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/4016576596215504 |
| dc.contributor.referee3.fl_str_mv |
OLIVEIRA, Roberto Célio Limão de |
| dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/4497607460894318 |
| dc.contributor.referee4.fl_str_mv |
SERRA, Ginalber Luiz de Oliveira |
| dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/0831092299374520 |
| dc.contributor.referee5.fl_str_mv |
SOUZA, Francisco das Chagas de |
| dc.contributor.referee5Lattes.fl_str_mv |
http://lattes.cnpq.br/2405363087479257 |
| dc.contributor.authorID.fl_str_mv |
706.797.033-49 |
| dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/6535271381344851 |
| dc.contributor.author.fl_str_mv |
RÊGO, Patrícia Helena Moraes |
| contributor_str_mv |
FONSECA NETO, João Viana da FONSECA NETO, João Viana da FREIRE, Raimundo Carlos Silvério OLIVEIRA, Roberto Célio Limão de SERRA, Ginalber Luiz de Oliveira SOUZA, Francisco das Chagas de |
| dc.subject.por.fl_str_mv |
Programação Dinâmica; Aprendizagem por Reforço; Programação Dinâmica Heurística; Controle Multivariável; Controle Ótimo; Regulador Linear Quadrático Discreto; Mínimos Quadrados Recursivos |
| topic |
Programação Dinâmica; Aprendizagem por Reforço; Programação Dinâmica Heurística; Controle Multivariável; Controle Ótimo; Regulador Linear Quadrático Discreto; Mínimos Quadrados Recursivos Dynamic Programming; Reinforcement Learning; Heuristic Dynamic Programming; Multivariable Control; Optimal Control; Discrete Linear Quadratic Regulator; Recursive Least-Squares Análise de Algoritmos e Complexidade de Computação |
| dc.subject.eng.fl_str_mv |
Dynamic Programming; Reinforcement Learning; Heuristic Dynamic Programming; Multivariable Control; Optimal Control; Discrete Linear Quadratic Regulator; Recursive Least-Squares |
| dc.subject.cnpq.fl_str_mv |
Análise de Algoritmos e Complexidade de Computação |
| description |
In this thesis a proposal of an uni ed approach of dynamic programming, reinforcement learning and function approximation theories aiming at the development of methods and algorithms for design of optimal control systems is presented. This approach is presented in the approximate dynamic programming context that allows approximating the optimal feedback solution as to reduce the computational complexity associated to the conventional dynamic programming methods for optimal control of multivariable systems. Speci cally, in the state and action dependent heuristic dynamic programming framework, this proposal is oriented for the development of online approximated solutions, numerically stable, of the Riccati-type Hamilton-Jacobi-Bellman equation associated to the discrete linear quadratic regulator problem which is based on a formulation that combines value function estimates by means of a RLS (Recursive Least-Squares) structure, temporal di erences and policy improvements. The development of the proposed methodologies, in this work, is focused mainly on the UDU T factorization that is inserted in this framework to improve the RLS estimation process of optimal decision policies of the discrete linear quadratic regulator, by circumventing convergence and numerical stability problems related to the covariance matrix ill-conditioning of the RLS approach. |
| publishDate |
2014 |
| dc.date.issued.fl_str_mv |
2014-07-24 |
| dc.date.accessioned.fl_str_mv |
2017-08-30T15:33:12Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
RÊGO, Patrícia Helena Moraes. Aprendizagem por Reforço e Programação Dinâmica Aproximada para Controle Ótimo: Uma Abordagem para o Projeto Online do Regulador Linear Quadrático Discreto com Programação Dinâmica Heurística Dependente de Estado e Ação.. 2014. [328 folhas]. Tese( PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET) - Universidade Federal do Maranhão, [São Luis] . |
| dc.identifier.uri.fl_str_mv |
http://tedebc.ufma.br:8080/jspui/handle/tede/1879 |
| identifier_str_mv |
RÊGO, Patrícia Helena Moraes. Aprendizagem por Reforço e Programação Dinâmica Aproximada para Controle Ótimo: Uma Abordagem para o Projeto Online do Regulador Linear Quadrático Discreto com Programação Dinâmica Heurística Dependente de Estado e Ação.. 2014. [328 folhas]. Tese( PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET) - Universidade Federal do Maranhão, [São Luis] . |
| url |
http://tedebc.ufma.br:8080/jspui/handle/tede/1879 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
| dc.publisher.program.fl_str_mv |
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET |
| dc.publisher.initials.fl_str_mv |
UFMA |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET |
| publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFMA instname:Universidade Federal do Maranhão (UFMA) instacron:UFMA |
| instname_str |
Universidade Federal do Maranhão (UFMA) |
| instacron_str |
UFMA |
| institution |
UFMA |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
| collection |
Biblioteca Digital de Teses e Dissertações da UFMA |
| bitstream.url.fl_str_mv |
http://tedebc.ufma.br:8080/bitstream/tede/1879/2/Patricia+Helena.pdf http://tedebc.ufma.br:8080/bitstream/tede/1879/1/license.txt |
| bitstream.checksum.fl_str_mv |
ca1f067231658f897d84b86181dbf1b9 97eeade1fce43278e63fe063657f8083 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA) |
| repository.mail.fl_str_mv |
repositorio@ufma.br||repositorio@ufma.br |
| _version_ |
1853507992689836032 |