Meta-aprendizagem aplicada a problemas de máxima satisfabilidade
| Ano de defesa: | 2017 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal do Maranhão
|
| Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCET
|
| Departamento: |
DEPARTAMENTO DE INFORMÁTICA/CCET
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://tedebc.ufma.br/jspui/handle/tede/2063 |
Resumo: | Meta-learning has been used with success in optimization problems, like the Traveling Salesman Problem (TSP) and the Maximum Satisfability Problem (MaxSAT). The latter is considered NP-Hard while also being relevant for academic and industrial problems. However, most of the research on the MaxSAT problem focuses of exact solution methods. Due to the need of generating good solutions on a limited time frame, this work considers the use of meta-heuristics. A meta-learning framework for meta-heuristic selection is also proposed for the MaxSAT problem, including a new representation based on graphs, new meta-features derived from this representation, the definition of machine learning mechanisms based on previous experience. Experiments show that the proposed outline is effective for selection of meta-heuristics and parameters for MaxSAT. The new metafeatures derived are shown to be as good as the current state of the art. The graph meta-features proposed can be applied to other problems on the near future. |
| id |
UFMA_3e61ff20226d3399abfebe0dc23be788 |
|---|---|
| oai_identifier_str |
oai:tede2:tede/2063 |
| network_acronym_str |
UFMA |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
| repository_id_str |
|
| spelling |
OLIVEIRA, Alexandre César Muniz de288.350.933-68http://lattes.cnpq.br/5225588855422632064.569.406-07http://lattes.cnpq.br/3589255200454129MIRANDA, Enrico Silva2017-12-28T19:24:25Z2017-07-24MIRANDA, Enrico Silva. Meta-aprendizagem aplicada a problemas de máxima satisfabilidade. 2017. 69 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Maranhão, São Luís, 2017.https://tedebc.ufma.br/jspui/handle/tede/2063Meta-learning has been used with success in optimization problems, like the Traveling Salesman Problem (TSP) and the Maximum Satisfability Problem (MaxSAT). The latter is considered NP-Hard while also being relevant for academic and industrial problems. However, most of the research on the MaxSAT problem focuses of exact solution methods. Due to the need of generating good solutions on a limited time frame, this work considers the use of meta-heuristics. A meta-learning framework for meta-heuristic selection is also proposed for the MaxSAT problem, including a new representation based on graphs, new meta-features derived from this representation, the definition of machine learning mechanisms based on previous experience. Experiments show that the proposed outline is effective for selection of meta-heuristics and parameters for MaxSAT. The new metafeatures derived are shown to be as good as the current state of the art. The graph meta-features proposed can be applied to other problems on the near future.Meta-aprendizado tem sido aplicado com sucesso em problemas de otimização, como o problema do Caixeiro Viajante (PCV) e Máxima Satisfabilidade (MaxSAT). Este último é um problema NP-Difícil, relevante para o estudo de problemas acadêmicos e industriais. No entanto, a maior parte da pesquisa atual no problema MaxSAT foca em métodos de solução exata. Devido à necessidade de soluções boas em um período de tempo reduzido, a utilização de meta-heurísticas é considerada neste trabalho. Além disso, propõe-se um framework de meta-aprendizagem para seleção de meta-heurísticas para o problema MaxSAT, o que inclui nova representação abstrata baseada em grafos, derivação de um novo conjunto de meta-características e definição de mecanismos de aprendizagem baseados em experiência obtida a priori. Experimentos comprovam que o arcabouço é eficaz para seleção de meta-heurística e de seus parâmetros para instâncias MaxSAT. As novas metacaracterísticas derivadas da representação baseada em grafo podem ser consideradas tão boas quanto o estado da arte atual. As medidas propostas de características de grafos podem ser aplicadas em trabalhos futuros a outras classes de problemasSubmitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-12-28T19:24:25Z No. of bitstreams: 1 EnricoSilvaMiranda.pdf: 1038590 bytes, checksum: c9628085fcbaf1956f83fcb822191812 (MD5)Made available in DSpace on 2017-12-28T19:24:25Z (GMT). No. of bitstreams: 1 EnricoSilvaMiranda.pdf: 1038590 bytes, checksum: c9628085fcbaf1956f83fcb822191812 (MD5) Previous issue date: 2017-07-24application/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCETUFMABrasilDEPARTAMENTO DE INFORMÁTICA/CCETMeta aprendizagemMeta heurístcasMáxima SatisfabilidadeMeta-learningMeta-heuristicsMaximum satisfiabilityEngenharia de SoftwareMeta-aprendizagem aplicada a problemas de máxima satisfabilidadeMeta-learnging applied to problems of maximum satisfiabilityinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALEnricoSilvaMiranda.pdfEnricoSilvaMiranda.pdfapplication/pdf1038590http://tedebc.ufma.br:8080/bitstream/tede/2063/2/EnricoSilvaMiranda.pdfc9628085fcbaf1956f83fcb822191812MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/2063/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/20632017-12-28 16:24:25.476oai:tede2:tede/2063IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312017-12-28T19:24:25Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false |
| dc.title.por.fl_str_mv |
Meta-aprendizagem aplicada a problemas de máxima satisfabilidade |
| dc.title.alternative.eng.fl_str_mv |
Meta-learnging applied to problems of maximum satisfiability |
| title |
Meta-aprendizagem aplicada a problemas de máxima satisfabilidade |
| spellingShingle |
Meta-aprendizagem aplicada a problemas de máxima satisfabilidade MIRANDA, Enrico Silva Meta aprendizagem Meta heurístcas Máxima Satisfabilidade Meta-learning Meta-heuristics Maximum satisfiability Engenharia de Software |
| title_short |
Meta-aprendizagem aplicada a problemas de máxima satisfabilidade |
| title_full |
Meta-aprendizagem aplicada a problemas de máxima satisfabilidade |
| title_fullStr |
Meta-aprendizagem aplicada a problemas de máxima satisfabilidade |
| title_full_unstemmed |
Meta-aprendizagem aplicada a problemas de máxima satisfabilidade |
| title_sort |
Meta-aprendizagem aplicada a problemas de máxima satisfabilidade |
| author |
MIRANDA, Enrico Silva |
| author_facet |
MIRANDA, Enrico Silva |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
OLIVEIRA, Alexandre César Muniz de |
| dc.contributor.advisor1ID.fl_str_mv |
288.350.933-68 |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/5225588855422632 |
| dc.contributor.authorID.fl_str_mv |
064.569.406-07 |
| dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/3589255200454129 |
| dc.contributor.author.fl_str_mv |
MIRANDA, Enrico Silva |
| contributor_str_mv |
OLIVEIRA, Alexandre César Muniz de |
| dc.subject.por.fl_str_mv |
Meta aprendizagem Meta heurístcas Máxima Satisfabilidade |
| topic |
Meta aprendizagem Meta heurístcas Máxima Satisfabilidade Meta-learning Meta-heuristics Maximum satisfiability Engenharia de Software |
| dc.subject.eng.fl_str_mv |
Meta-learning Meta-heuristics Maximum satisfiability |
| dc.subject.cnpq.fl_str_mv |
Engenharia de Software |
| description |
Meta-learning has been used with success in optimization problems, like the Traveling Salesman Problem (TSP) and the Maximum Satisfability Problem (MaxSAT). The latter is considered NP-Hard while also being relevant for academic and industrial problems. However, most of the research on the MaxSAT problem focuses of exact solution methods. Due to the need of generating good solutions on a limited time frame, this work considers the use of meta-heuristics. A meta-learning framework for meta-heuristic selection is also proposed for the MaxSAT problem, including a new representation based on graphs, new meta-features derived from this representation, the definition of machine learning mechanisms based on previous experience. Experiments show that the proposed outline is effective for selection of meta-heuristics and parameters for MaxSAT. The new metafeatures derived are shown to be as good as the current state of the art. The graph meta-features proposed can be applied to other problems on the near future. |
| publishDate |
2017 |
| dc.date.accessioned.fl_str_mv |
2017-12-28T19:24:25Z |
| dc.date.issued.fl_str_mv |
2017-07-24 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
MIRANDA, Enrico Silva. Meta-aprendizagem aplicada a problemas de máxima satisfabilidade. 2017. 69 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Maranhão, São Luís, 2017. |
| dc.identifier.uri.fl_str_mv |
https://tedebc.ufma.br/jspui/handle/tede/2063 |
| identifier_str_mv |
MIRANDA, Enrico Silva. Meta-aprendizagem aplicada a problemas de máxima satisfabilidade. 2017. 69 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Maranhão, São Luís, 2017. |
| url |
https://tedebc.ufma.br/jspui/handle/tede/2063 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
| dc.publisher.program.fl_str_mv |
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCET |
| dc.publisher.initials.fl_str_mv |
UFMA |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
DEPARTAMENTO DE INFORMÁTICA/CCET |
| publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFMA instname:Universidade Federal do Maranhão (UFMA) instacron:UFMA |
| instname_str |
Universidade Federal do Maranhão (UFMA) |
| instacron_str |
UFMA |
| institution |
UFMA |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
| collection |
Biblioteca Digital de Teses e Dissertações da UFMA |
| bitstream.url.fl_str_mv |
http://tedebc.ufma.br:8080/bitstream/tede/2063/2/EnricoSilvaMiranda.pdf http://tedebc.ufma.br:8080/bitstream/tede/2063/1/license.txt |
| bitstream.checksum.fl_str_mv |
c9628085fcbaf1956f83fcb822191812 97eeade1fce43278e63fe063657f8083 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA) |
| repository.mail.fl_str_mv |
repositorio@ufma.br||repositorio@ufma.br |
| _version_ |
1853507995405647872 |