Sintonia online de controladores PID adaptativo-ótimo via redes neuronais artificiais
| Ano de defesa: | 2017 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal do Maranhão
|
| Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
|
| Departamento: |
DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | http://tedebc.ufma.br:8080/jspui/handle/tede/1743 |
Resumo: | The emergence of new industrial plants with great complexity and the need to improve the operation of existing plants has fostered the development of high performance control systems, these systems must not only meet the design specifications, such as merit figures, but also operate at minimal cost and impacts at environment. Motivated by this demand, it is presented in this dissertation the development of methods for on-line tuning of control system parameters, ie, a methodology is presented for the on-line tuning of adaptive and optimal PID controllers via Artificial Neural Networks(ANNs). The approach developed in this dissertation is based on three PID controllers parameters. [Artificial neural networks with radial base functions and Model Predictive Control (MPC). From the union of these approaches a general formulation of an Adaptive-optimal PID controller via artificial neural networks with on-line tuning was presented. The on-line tuning methodology for the ANN parameters is presented in the context of MPC, predicting plant output. For the PID controller, we proposed a modification of the standard structure in order to adapt the error function. The adjustment of the PID controller parameters and the prediction of the optimally plant output, are performed by the ANN-RBF weights adjustments. In addition, an indoor implementation of the control system were proposed for the positioning of a photovoltaic panel. The performance evaluations of the proposed system were obtained from computational experiments results that were based on mathematical models and hardware experiments, that were obtained from a reduced model of a photovoltaic panel. Finally, a comparison between the proposed methodology with the classical PID controller were performed and the proposed methodology presented to be more flexible to the insertion of new performance metrics and the results achieved from the ANN, were better than the ones obtained by the classical PID tuning, such as: Ziegler-Nichols or trial and error. |
| id |
UFMA_eeede5c02525d77aef0e1324629b3c2b |
|---|---|
| oai_identifier_str |
oai:tede2:tede/1743 |
| network_acronym_str |
UFMA |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
| repository_id_str |
|
| spelling |
FONSECA NETO, João Viana da219.947.904-82016.491.583-43http://lattes.cnpq.br/2626376954180751Santos, Hilton Seheris da Silva2017-07-18T19:13:43Z2017-06-27SANTOS, Hilton Seheris da Silva. Sintonia online de controladores PID adaptativo-ótimo via redes neuronais artificiais. 2017. 101 f. Dissertação (Mestrado em Engenharia de Eletricidade) - Universidade Federal do Maranhão, São Luís, 2017.http://tedebc.ufma.br:8080/jspui/handle/tede/1743The emergence of new industrial plants with great complexity and the need to improve the operation of existing plants has fostered the development of high performance control systems, these systems must not only meet the design specifications, such as merit figures, but also operate at minimal cost and impacts at environment. Motivated by this demand, it is presented in this dissertation the development of methods for on-line tuning of control system parameters, ie, a methodology is presented for the on-line tuning of adaptive and optimal PID controllers via Artificial Neural Networks(ANNs). The approach developed in this dissertation is based on three PID controllers parameters. [Artificial neural networks with radial base functions and Model Predictive Control (MPC). From the union of these approaches a general formulation of an Adaptive-optimal PID controller via artificial neural networks with on-line tuning was presented. The on-line tuning methodology for the ANN parameters is presented in the context of MPC, predicting plant output. For the PID controller, we proposed a modification of the standard structure in order to adapt the error function. The adjustment of the PID controller parameters and the prediction of the optimally plant output, are performed by the ANN-RBF weights adjustments. In addition, an indoor implementation of the control system were proposed for the positioning of a photovoltaic panel. The performance evaluations of the proposed system were obtained from computational experiments results that were based on mathematical models and hardware experiments, that were obtained from a reduced model of a photovoltaic panel. Finally, a comparison between the proposed methodology with the classical PID controller were performed and the proposed methodology presented to be more flexible to the insertion of new performance metrics and the results achieved from the ANN, were better than the ones obtained by the classical PID tuning, such as: Ziegler-Nichols or trial and error.O surgimento de novas plantas industriais com grande complexidade e a necessidade de melhorar a operação das plantas já existentes tem fomentado o desenvolvimento de sistemas de controle de alto desempenho, estes sistemas devem atender não só as especificações de projeto, tal como: figuras de mérito, mas também devem operar com um custo mínimo e sem causar impactos desastrosos para o meio ambiente. Motivados por esta demanda, apresenta-se nesta dissertação o desenvolvimento de métodos para sintonia online dos parâmetros dos sistemas de controle, ie, apresenta-se uma metodologia para a sintonia online de controladores PID adaptativo e ótimo via Redes Neurais Artificiais (RNAs). A abordagem desenvolvida nesta dissertação tem base as ações dos controladores PID de três termos, redes neurais artificiais com funções de base radial e Controle preditivo baseado em modelo (MPC - Model Predictive Control), a partir da união destas abordagens elabora-se a formulação geral do controlador PID Adaptativo-Ótimo via redes neurais artificiais, com sintonia online. A metodologia de ajuste online dos parâmetros da RNA está no contexto do MPC para predição de saída da planta. Para o caso do controlador PID, tem-se a modificação da estrutura padrão com o objetivo de adaptação em função do erro. O ajuste dos termos do controlador PID e da predição da saída na planta, de forma ótima, é realizada pelo ajustes dos pesos da RNA-RBF. Além disso, apresenta-se a implementação indoor do sistema de controle desenvolvido para o posicionamento de um painel fotovoltaico. As avaliações de desempenho do sistema proposto são obtidos de resultados de experimentos computacionais que são baseados em modelos matemáticos e experimentos em hardware que são obtidos de um modelo reduzido de um painel fotovoltaico. Por fim, comparando o PID clássico com o controlador desenvolvido constatou-se que este último apresenta mais flexibilidade para inserir novas métricas de desempenho e os resultados atingidos são melhores do que os parâmetros obtidos por meio da sintonia do PID clássica, tais como: métodos de Ziegler-Nichols ou tentativa e erroSubmitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-07-18T19:13:43Z No. of bitstreams: 1 HiltonSantos.pdf: 3137200 bytes, checksum: a7b77b12eeb29959ab49e7ef675229d9 (MD5)Made available in DSpace on 2017-07-18T19:13:43Z (GMT). No. of bitstreams: 1 HiltonSantos.pdf: 3137200 bytes, checksum: a7b77b12eeb29959ab49e7ef675229d9 (MD5) Previous issue date: 2017-06-27application/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCETUFMABrasilDEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCETSintonia onlineRedes neurais artificiaisControlador PIDControle adaptativoPainel fotovoltaicoControle preditivoPhotovoltaic panelOnline tuningArtificial neural networksPID controllerAdaptive controlControle de Processos Eletrônicos, RetroalimentaçãoSintonia online de controladores PID adaptativo-ótimo via redes neuronais artificiaisOnline tuning of adaptive-optimal PID controllers via artificial neural networksinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALHiltonSantos.pdfHiltonSantos.pdfapplication/pdf3137200http://tedebc.ufma.br:8080/bitstream/tede/1743/2/HiltonSantos.pdfa7b77b12eeb29959ab49e7ef675229d9MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/1743/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/17432018-01-26 18:07:44.263oai:tede2:tede/1743IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312018-01-26T21:07:44Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false |
| dc.title.por.fl_str_mv |
Sintonia online de controladores PID adaptativo-ótimo via redes neuronais artificiais |
| dc.title.alternative.por.fl_str_mv |
Online tuning of adaptive-optimal PID controllers via artificial neural networks |
| title |
Sintonia online de controladores PID adaptativo-ótimo via redes neuronais artificiais |
| spellingShingle |
Sintonia online de controladores PID adaptativo-ótimo via redes neuronais artificiais Santos, Hilton Seheris da Silva Sintonia online Redes neurais artificiais Controlador PID Controle adaptativo Painel fotovoltaico Controle preditivo Photovoltaic panel Online tuning Artificial neural networks PID controller Adaptive control Controle de Processos Eletrônicos, Retroalimentação |
| title_short |
Sintonia online de controladores PID adaptativo-ótimo via redes neuronais artificiais |
| title_full |
Sintonia online de controladores PID adaptativo-ótimo via redes neuronais artificiais |
| title_fullStr |
Sintonia online de controladores PID adaptativo-ótimo via redes neuronais artificiais |
| title_full_unstemmed |
Sintonia online de controladores PID adaptativo-ótimo via redes neuronais artificiais |
| title_sort |
Sintonia online de controladores PID adaptativo-ótimo via redes neuronais artificiais |
| author |
Santos, Hilton Seheris da Silva |
| author_facet |
Santos, Hilton Seheris da Silva |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
FONSECA NETO, João Viana da |
| dc.contributor.advisor1ID.fl_str_mv |
219.947.904-82 |
| dc.contributor.authorID.fl_str_mv |
016.491.583-43 |
| dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/2626376954180751 |
| dc.contributor.author.fl_str_mv |
Santos, Hilton Seheris da Silva |
| contributor_str_mv |
FONSECA NETO, João Viana da |
| dc.subject.por.fl_str_mv |
Sintonia online Redes neurais artificiais Controlador PID Controle adaptativo Painel fotovoltaico Controle preditivo Photovoltaic panel |
| topic |
Sintonia online Redes neurais artificiais Controlador PID Controle adaptativo Painel fotovoltaico Controle preditivo Photovoltaic panel Online tuning Artificial neural networks PID controller Adaptive control Controle de Processos Eletrônicos, Retroalimentação |
| dc.subject.eng.fl_str_mv |
Online tuning Artificial neural networks PID controller Adaptive control |
| dc.subject.cnpq.fl_str_mv |
Controle de Processos Eletrônicos, Retroalimentação |
| description |
The emergence of new industrial plants with great complexity and the need to improve the operation of existing plants has fostered the development of high performance control systems, these systems must not only meet the design specifications, such as merit figures, but also operate at minimal cost and impacts at environment. Motivated by this demand, it is presented in this dissertation the development of methods for on-line tuning of control system parameters, ie, a methodology is presented for the on-line tuning of adaptive and optimal PID controllers via Artificial Neural Networks(ANNs). The approach developed in this dissertation is based on three PID controllers parameters. [Artificial neural networks with radial base functions and Model Predictive Control (MPC). From the union of these approaches a general formulation of an Adaptive-optimal PID controller via artificial neural networks with on-line tuning was presented. The on-line tuning methodology for the ANN parameters is presented in the context of MPC, predicting plant output. For the PID controller, we proposed a modification of the standard structure in order to adapt the error function. The adjustment of the PID controller parameters and the prediction of the optimally plant output, are performed by the ANN-RBF weights adjustments. In addition, an indoor implementation of the control system were proposed for the positioning of a photovoltaic panel. The performance evaluations of the proposed system were obtained from computational experiments results that were based on mathematical models and hardware experiments, that were obtained from a reduced model of a photovoltaic panel. Finally, a comparison between the proposed methodology with the classical PID controller were performed and the proposed methodology presented to be more flexible to the insertion of new performance metrics and the results achieved from the ANN, were better than the ones obtained by the classical PID tuning, such as: Ziegler-Nichols or trial and error. |
| publishDate |
2017 |
| dc.date.accessioned.fl_str_mv |
2017-07-18T19:13:43Z |
| dc.date.issued.fl_str_mv |
2017-06-27 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
SANTOS, Hilton Seheris da Silva. Sintonia online de controladores PID adaptativo-ótimo via redes neuronais artificiais. 2017. 101 f. Dissertação (Mestrado em Engenharia de Eletricidade) - Universidade Federal do Maranhão, São Luís, 2017. |
| dc.identifier.uri.fl_str_mv |
http://tedebc.ufma.br:8080/jspui/handle/tede/1743 |
| identifier_str_mv |
SANTOS, Hilton Seheris da Silva. Sintonia online de controladores PID adaptativo-ótimo via redes neuronais artificiais. 2017. 101 f. Dissertação (Mestrado em Engenharia de Eletricidade) - Universidade Federal do Maranhão, São Luís, 2017. |
| url |
http://tedebc.ufma.br:8080/jspui/handle/tede/1743 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
| dc.publisher.program.fl_str_mv |
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET |
| dc.publisher.initials.fl_str_mv |
UFMA |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET |
| publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFMA instname:Universidade Federal do Maranhão (UFMA) instacron:UFMA |
| instname_str |
Universidade Federal do Maranhão (UFMA) |
| instacron_str |
UFMA |
| institution |
UFMA |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
| collection |
Biblioteca Digital de Teses e Dissertações da UFMA |
| bitstream.url.fl_str_mv |
http://tedebc.ufma.br:8080/bitstream/tede/1743/2/HiltonSantos.pdf http://tedebc.ufma.br:8080/bitstream/tede/1743/1/license.txt |
| bitstream.checksum.fl_str_mv |
a7b77b12eeb29959ab49e7ef675229d9 97eeade1fce43278e63fe063657f8083 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA) |
| repository.mail.fl_str_mv |
repositorio@ufma.br||repositorio@ufma.br |
| _version_ |
1853507991233363968 |