Sintonia online de controladores PID adaptativo-ótimo via redes neuronais artificiais

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Santos, Hilton Seheris da Silva lattes
Orientador(a): FONSECA NETO, João Viana da
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Maranhão
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
Departamento: DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tedebc.ufma.br:8080/jspui/handle/tede/1743
Resumo: The emergence of new industrial plants with great complexity and the need to improve the operation of existing plants has fostered the development of high performance control systems, these systems must not only meet the design specifications, such as merit figures, but also operate at minimal cost and impacts at environment. Motivated by this demand, it is presented in this dissertation the development of methods for on-line tuning of control system parameters, ie, a methodology is presented for the on-line tuning of adaptive and optimal PID controllers via Artificial Neural Networks(ANNs). The approach developed in this dissertation is based on three PID controllers parameters. [Artificial neural networks with radial base functions and Model Predictive Control (MPC). From the union of these approaches a general formulation of an Adaptive-optimal PID controller via artificial neural networks with on-line tuning was presented. The on-line tuning methodology for the ANN parameters is presented in the context of MPC, predicting plant output. For the PID controller, we proposed a modification of the standard structure in order to adapt the error function. The adjustment of the PID controller parameters and the prediction of the optimally plant output, are performed by the ANN-RBF weights adjustments. In addition, an indoor implementation of the control system were proposed for the positioning of a photovoltaic panel. The performance evaluations of the proposed system were obtained from computational experiments results that were based on mathematical models and hardware experiments, that were obtained from a reduced model of a photovoltaic panel. Finally, a comparison between the proposed methodology with the classical PID controller were performed and the proposed methodology presented to be more flexible to the insertion of new performance metrics and the results achieved from the ANN, were better than the ones obtained by the classical PID tuning, such as: Ziegler-Nichols or trial and error.
id UFMA_eeede5c02525d77aef0e1324629b3c2b
oai_identifier_str oai:tede2:tede/1743
network_acronym_str UFMA
network_name_str Biblioteca Digital de Teses e Dissertações da UFMA
repository_id_str
spelling FONSECA NETO, João Viana da219.947.904-82016.491.583-43http://lattes.cnpq.br/2626376954180751Santos, Hilton Seheris da Silva2017-07-18T19:13:43Z2017-06-27SANTOS, Hilton Seheris da Silva. Sintonia online de controladores PID adaptativo-ótimo via redes neuronais artificiais. 2017. 101 f. Dissertação (Mestrado em Engenharia de Eletricidade) - Universidade Federal do Maranhão, São Luís, 2017.http://tedebc.ufma.br:8080/jspui/handle/tede/1743The emergence of new industrial plants with great complexity and the need to improve the operation of existing plants has fostered the development of high performance control systems, these systems must not only meet the design specifications, such as merit figures, but also operate at minimal cost and impacts at environment. Motivated by this demand, it is presented in this dissertation the development of methods for on-line tuning of control system parameters, ie, a methodology is presented for the on-line tuning of adaptive and optimal PID controllers via Artificial Neural Networks(ANNs). The approach developed in this dissertation is based on three PID controllers parameters. [Artificial neural networks with radial base functions and Model Predictive Control (MPC). From the union of these approaches a general formulation of an Adaptive-optimal PID controller via artificial neural networks with on-line tuning was presented. The on-line tuning methodology for the ANN parameters is presented in the context of MPC, predicting plant output. For the PID controller, we proposed a modification of the standard structure in order to adapt the error function. The adjustment of the PID controller parameters and the prediction of the optimally plant output, are performed by the ANN-RBF weights adjustments. In addition, an indoor implementation of the control system were proposed for the positioning of a photovoltaic panel. The performance evaluations of the proposed system were obtained from computational experiments results that were based on mathematical models and hardware experiments, that were obtained from a reduced model of a photovoltaic panel. Finally, a comparison between the proposed methodology with the classical PID controller were performed and the proposed methodology presented to be more flexible to the insertion of new performance metrics and the results achieved from the ANN, were better than the ones obtained by the classical PID tuning, such as: Ziegler-Nichols or trial and error.O surgimento de novas plantas industriais com grande complexidade e a necessidade de melhorar a operação das plantas já existentes tem fomentado o desenvolvimento de sistemas de controle de alto desempenho, estes sistemas devem atender não só as especificações de projeto, tal como: figuras de mérito, mas também devem operar com um custo mínimo e sem causar impactos desastrosos para o meio ambiente. Motivados por esta demanda, apresenta-se nesta dissertação o desenvolvimento de métodos para sintonia online dos parâmetros dos sistemas de controle, ie, apresenta-se uma metodologia para a sintonia online de controladores PID adaptativo e ótimo via Redes Neurais Artificiais (RNAs). A abordagem desenvolvida nesta dissertação tem base as ações dos controladores PID de três termos, redes neurais artificiais com funções de base radial e Controle preditivo baseado em modelo (MPC - Model Predictive Control), a partir da união destas abordagens elabora-se a formulação geral do controlador PID Adaptativo-Ótimo via redes neurais artificiais, com sintonia online. A metodologia de ajuste online dos parâmetros da RNA está no contexto do MPC para predição de saída da planta. Para o caso do controlador PID, tem-se a modificação da estrutura padrão com o objetivo de adaptação em função do erro. O ajuste dos termos do controlador PID e da predição da saída na planta, de forma ótima, é realizada pelo ajustes dos pesos da RNA-RBF. Além disso, apresenta-se a implementação indoor do sistema de controle desenvolvido para o posicionamento de um painel fotovoltaico. As avaliações de desempenho do sistema proposto são obtidos de resultados de experimentos computacionais que são baseados em modelos matemáticos e experimentos em hardware que são obtidos de um modelo reduzido de um painel fotovoltaico. Por fim, comparando o PID clássico com o controlador desenvolvido constatou-se que este último apresenta mais flexibilidade para inserir novas métricas de desempenho e os resultados atingidos são melhores do que os parâmetros obtidos por meio da sintonia do PID clássica, tais como: métodos de Ziegler-Nichols ou tentativa e erroSubmitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-07-18T19:13:43Z No. of bitstreams: 1 HiltonSantos.pdf: 3137200 bytes, checksum: a7b77b12eeb29959ab49e7ef675229d9 (MD5)Made available in DSpace on 2017-07-18T19:13:43Z (GMT). No. of bitstreams: 1 HiltonSantos.pdf: 3137200 bytes, checksum: a7b77b12eeb29959ab49e7ef675229d9 (MD5) Previous issue date: 2017-06-27application/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCETUFMABrasilDEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCETSintonia onlineRedes neurais artificiaisControlador PIDControle adaptativoPainel fotovoltaicoControle preditivoPhotovoltaic panelOnline tuningArtificial neural networksPID controllerAdaptive controlControle de Processos Eletrônicos, RetroalimentaçãoSintonia online de controladores PID adaptativo-ótimo via redes neuronais artificiaisOnline tuning of adaptive-optimal PID controllers via artificial neural networksinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALHiltonSantos.pdfHiltonSantos.pdfapplication/pdf3137200http://tedebc.ufma.br:8080/bitstream/tede/1743/2/HiltonSantos.pdfa7b77b12eeb29959ab49e7ef675229d9MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/1743/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/17432018-01-26 18:07:44.263oai:tede2:tede/1743IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312018-01-26T21:07:44Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false
dc.title.por.fl_str_mv Sintonia online de controladores PID adaptativo-ótimo via redes neuronais artificiais
dc.title.alternative.por.fl_str_mv Online tuning of adaptive-optimal PID controllers via artificial neural networks
title Sintonia online de controladores PID adaptativo-ótimo via redes neuronais artificiais
spellingShingle Sintonia online de controladores PID adaptativo-ótimo via redes neuronais artificiais
Santos, Hilton Seheris da Silva
Sintonia online
Redes neurais artificiais
Controlador PID
Controle adaptativo
Painel fotovoltaico
Controle preditivo
Photovoltaic panel
Online tuning
Artificial neural networks
PID controller
Adaptive control
Controle de Processos Eletrônicos, Retroalimentação
title_short Sintonia online de controladores PID adaptativo-ótimo via redes neuronais artificiais
title_full Sintonia online de controladores PID adaptativo-ótimo via redes neuronais artificiais
title_fullStr Sintonia online de controladores PID adaptativo-ótimo via redes neuronais artificiais
title_full_unstemmed Sintonia online de controladores PID adaptativo-ótimo via redes neuronais artificiais
title_sort Sintonia online de controladores PID adaptativo-ótimo via redes neuronais artificiais
author Santos, Hilton Seheris da Silva
author_facet Santos, Hilton Seheris da Silva
author_role author
dc.contributor.advisor1.fl_str_mv FONSECA NETO, João Viana da
dc.contributor.advisor1ID.fl_str_mv 219.947.904-82
dc.contributor.authorID.fl_str_mv 016.491.583-43
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/2626376954180751
dc.contributor.author.fl_str_mv Santos, Hilton Seheris da Silva
contributor_str_mv FONSECA NETO, João Viana da
dc.subject.por.fl_str_mv Sintonia online
Redes neurais artificiais
Controlador PID
Controle adaptativo
Painel fotovoltaico
Controle preditivo
Photovoltaic panel
topic Sintonia online
Redes neurais artificiais
Controlador PID
Controle adaptativo
Painel fotovoltaico
Controle preditivo
Photovoltaic panel
Online tuning
Artificial neural networks
PID controller
Adaptive control
Controle de Processos Eletrônicos, Retroalimentação
dc.subject.eng.fl_str_mv Online tuning
Artificial neural networks
PID controller
Adaptive control
dc.subject.cnpq.fl_str_mv Controle de Processos Eletrônicos, Retroalimentação
description The emergence of new industrial plants with great complexity and the need to improve the operation of existing plants has fostered the development of high performance control systems, these systems must not only meet the design specifications, such as merit figures, but also operate at minimal cost and impacts at environment. Motivated by this demand, it is presented in this dissertation the development of methods for on-line tuning of control system parameters, ie, a methodology is presented for the on-line tuning of adaptive and optimal PID controllers via Artificial Neural Networks(ANNs). The approach developed in this dissertation is based on three PID controllers parameters. [Artificial neural networks with radial base functions and Model Predictive Control (MPC). From the union of these approaches a general formulation of an Adaptive-optimal PID controller via artificial neural networks with on-line tuning was presented. The on-line tuning methodology for the ANN parameters is presented in the context of MPC, predicting plant output. For the PID controller, we proposed a modification of the standard structure in order to adapt the error function. The adjustment of the PID controller parameters and the prediction of the optimally plant output, are performed by the ANN-RBF weights adjustments. In addition, an indoor implementation of the control system were proposed for the positioning of a photovoltaic panel. The performance evaluations of the proposed system were obtained from computational experiments results that were based on mathematical models and hardware experiments, that were obtained from a reduced model of a photovoltaic panel. Finally, a comparison between the proposed methodology with the classical PID controller were performed and the proposed methodology presented to be more flexible to the insertion of new performance metrics and the results achieved from the ANN, were better than the ones obtained by the classical PID tuning, such as: Ziegler-Nichols or trial and error.
publishDate 2017
dc.date.accessioned.fl_str_mv 2017-07-18T19:13:43Z
dc.date.issued.fl_str_mv 2017-06-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SANTOS, Hilton Seheris da Silva. Sintonia online de controladores PID adaptativo-ótimo via redes neuronais artificiais. 2017. 101 f. Dissertação (Mestrado em Engenharia de Eletricidade) - Universidade Federal do Maranhão, São Luís, 2017.
dc.identifier.uri.fl_str_mv http://tedebc.ufma.br:8080/jspui/handle/tede/1743
identifier_str_mv SANTOS, Hilton Seheris da Silva. Sintonia online de controladores PID adaptativo-ótimo via redes neuronais artificiais. 2017. 101 f. Dissertação (Mestrado em Engenharia de Eletricidade) - Universidade Federal do Maranhão, São Luís, 2017.
url http://tedebc.ufma.br:8080/jspui/handle/tede/1743
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.publisher.program.fl_str_mv PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
dc.publisher.initials.fl_str_mv UFMA
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFMA
instname:Universidade Federal do Maranhão (UFMA)
instacron:UFMA
instname_str Universidade Federal do Maranhão (UFMA)
instacron_str UFMA
institution UFMA
reponame_str Biblioteca Digital de Teses e Dissertações da UFMA
collection Biblioteca Digital de Teses e Dissertações da UFMA
bitstream.url.fl_str_mv http://tedebc.ufma.br:8080/bitstream/tede/1743/2/HiltonSantos.pdf
http://tedebc.ufma.br:8080/bitstream/tede/1743/1/license.txt
bitstream.checksum.fl_str_mv a7b77b12eeb29959ab49e7ef675229d9
97eeade1fce43278e63fe063657f8083
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)
repository.mail.fl_str_mv repositorio@ufma.br||repositorio@ufma.br
_version_ 1853507991233363968