Reconhecimento de voz utilizando seleção dinâmica de redes neurais

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: ROCHA, Priscila Lima lattes
Orientador(a): BARROS FILHO, Allan Kardec Duailibe lattes
Banca de defesa: PRINCIPE, José Carlos lattes, SOUZA, Francisco das Chagas de
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Maranhão
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
Departamento: DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://tedebc.ufma.br/jspui/handle/tede/2131
Resumo: This work proposes a hierarchical architecture composed of a set of neural networks specialists based on the ensemble method with dynamic selection of classifiers for application in speech recognition systems. The task of pattern recognition proposed in this work involves a group of 30 commands in the Brazilian Portuguese language. These commands are coded by a two-dimensional temporal matrix, resulting from the application of the Discrete Cosine Transformation (DCT) in the mel-ceptral coefficients. To avoid the problem of separability of the patterns, they are modified through a nonlinear transformation to a high-dimensional space through a suitable set of Gaussian Radial Base Functions (GRBF). The classification is done through the dynamic classifier selection method, in which Multilayer Perceptron (MLP) and Vector Vector Quantization Learning (LVQ) configurations are analyzed to constitute the multiple classifiers specialized in the subdivisions made in the total of classes to be recognized. The performances these configurations are evaluated during the training, validation and testing phases of the voice recognition system. Then, given a new test pattern, this is applied to the GRBF set, where each function is parameterized with the centroid and variance characteristics of the classes. Therefore, the GRBF that present the highest image value for the function indicates to which class this pattern is located, thus directing, to the specialist neural network which will provide the final classification result based on the local accuracy. At the end, the performance of the neural network configurations chosen for the composition of the multiple classifiers was verified. The result of the comparison between MLP and LVQ configurations for the proposed system showed that the overall accuracy rate using patterns of dimensions 4, 9 and 16 in the original feature space for the LVQ networks was 87.52 %, 88.39 % and 89.6 %, respectively. The MLP networks obtained an overall accuracy rate of 91.44 %, 93.15 % and 94.9 %, respectively
id UFMA_fc55e591513e7cb6e8dcaf0ff60f1896
oai_identifier_str oai:tede2:tede/2131
network_acronym_str UFMA
network_name_str Biblioteca Digital de Teses e Dissertações da UFMA
repository_id_str
spelling BARROS FILHO, Allan Kardec Duailibe340.225.893-53http://lattes.cnpq.br/0492330410079141SILVA, Washington Luís Santos515.566.773-91http://lattes.cnpq.br/2097264664222196PRINCIPE, José CarlosSOUZA, Francisco das Chagas dehttp://lattes.cnpq.br/2405363087479257046.444.863-88http://lattes.cnpq.br/0210192910474011ROCHA, Priscila Lima2018-03-28T20:40:03Z2018-02-23ROCHA, Priscila Lima. Reconhecimento de voz utilizando seleção dinâmica de redes neurais. 2018. 110 f. Dissertação (Mestrado em Engenharia de Eletricidade) - Universidade Federal do Maranhão, São Luís, 2018.https://tedebc.ufma.br/jspui/handle/tede/2131This work proposes a hierarchical architecture composed of a set of neural networks specialists based on the ensemble method with dynamic selection of classifiers for application in speech recognition systems. The task of pattern recognition proposed in this work involves a group of 30 commands in the Brazilian Portuguese language. These commands are coded by a two-dimensional temporal matrix, resulting from the application of the Discrete Cosine Transformation (DCT) in the mel-ceptral coefficients. To avoid the problem of separability of the patterns, they are modified through a nonlinear transformation to a high-dimensional space through a suitable set of Gaussian Radial Base Functions (GRBF). The classification is done through the dynamic classifier selection method, in which Multilayer Perceptron (MLP) and Vector Vector Quantization Learning (LVQ) configurations are analyzed to constitute the multiple classifiers specialized in the subdivisions made in the total of classes to be recognized. The performances these configurations are evaluated during the training, validation and testing phases of the voice recognition system. Then, given a new test pattern, this is applied to the GRBF set, where each function is parameterized with the centroid and variance characteristics of the classes. Therefore, the GRBF that present the highest image value for the function indicates to which class this pattern is located, thus directing, to the specialist neural network which will provide the final classification result based on the local accuracy. At the end, the performance of the neural network configurations chosen for the composition of the multiple classifiers was verified. The result of the comparison between MLP and LVQ configurations for the proposed system showed that the overall accuracy rate using patterns of dimensions 4, 9 and 16 in the original feature space for the LVQ networks was 87.52 %, 88.39 % and 89.6 %, respectively. The MLP networks obtained an overall accuracy rate of 91.44 %, 93.15 % and 94.9 %, respectivelyEste trabalho propõe uma arquitetura hierarquizada composta por um conjunto redes neurais especialistas baseada no método de comitês com seleção dinâmica de classificadores para aplicação em sistemas de reconhecimento de sinais de voz. A tarefa de reconhecimento de padrões proposta neste trabalho envolve um grupo de 30 comandos na língua portuguesa brasileira. Estes comandos são codificados por uma matriz temporal bidimensional, resultante da aplicação da Transforma Cosseno Discreta (TCD) nos coeficientes mel-cepstrais. Para evitar o problema de separabilidade dos padrões, eles são modificados através de uma transformação não linear para um espaço de alta dimensionalidade através de um conjunto de Funções de Base Radial Gaussiana (FBRG). A classificação é feita por meio do método de seleção dinâmica de classificadores, na qual as configurações Perceptron de Múltiplas Camadas (Multilayer Perceptron - MLP) e Aprendizado por Quantização Vetorial (Learning Vector Quantization - LVQ) são analisadas para constituir os múltiplos classificadores especializados nas subdivisões realizadas no total de classes a serem reconhecidas. Os desempenhos destas configurações são avaliados durante as fases de treinamento, validação e teste do sistema de reconhecimento de voz. Então, dado um novo padrão de teste, este é aplicado ao conjunto de FBRG, onde cada função está parametrizada com as características de centroide e variância das classes. Logo, aquela a FRBG que apresentar o maior valor de imagem para a função indica a que classe este padrão está localizado, direcionando assim, para a rede neural especialista que fornecerá o resultado final de classificação baseada na acurácia local. Ao final, verificou-se o desempenho das configurações de redes neurais escolhidas para a composição dos múltiplos classificadores. O resultado da comparação entre as configurações MLP e LVQ para o sistema proposto mostrou que a taxa de acurácia global utilizando padrões de dimensões 4, 9 e 16 no espaço de características original para as redes LVQ ficou em 87.52%, 88.39% e 89.6% , respectivamente. Já as redes MLP obtiveram uma taxa de acurácia global de 91.44%, 93.15% e 94.9%, respectivamente.Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2018-03-28T20:40:03Z No. of bitstreams: 1 PriscilaRocha.pdf: 1829500 bytes, checksum: 684598b89c594f94a8037d441f2cb8c6 (MD5)Made available in DSpace on 2018-03-28T20:40:03Z (GMT). No. of bitstreams: 1 PriscilaRocha.pdf: 1829500 bytes, checksum: 684598b89c594f94a8037d441f2cb8c6 (MD5) Previous issue date: 2018-02-23application/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCETUFMABrasilDEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCETRedes NeuraisReconhecimento Automático de VozCoeficientes Mel-CepstraisModelos TCDPerceptron de Múltiplas CamadasAprendizado por Quantização VetorialFunção de Base Radial GaussianaMistura de EspecialistasAutomatic Speech RecognitionNeural NetworkDCT ModelsMultilayer PerceptronLearning Vector QuantizationGaussian Radial Basis FunctionMixture of ExpertsLinguagem Formais e AutomatosReconhecimento de voz utilizando seleção dinâmica de redes neuraisSpeech recognition using dynamic selection of neural networksinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALPriscilaRocha.pdfPriscilaRocha.pdfapplication/pdf1829500http://tedebc.ufma.br:8080/bitstream/tede/2131/2/PriscilaRocha.pdf684598b89c594f94a8037d441f2cb8c6MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/2131/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/21312018-03-28 17:40:03.93oai:tede2:tede/2131IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312018-03-28T20:40:03Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false
dc.title.por.fl_str_mv Reconhecimento de voz utilizando seleção dinâmica de redes neurais
dc.title.alternative.por.fl_str_mv Speech recognition using dynamic selection of neural networks
title Reconhecimento de voz utilizando seleção dinâmica de redes neurais
spellingShingle Reconhecimento de voz utilizando seleção dinâmica de redes neurais
ROCHA, Priscila Lima
Redes Neurais
Reconhecimento Automático de Voz
Coeficientes Mel-Cepstrais
Modelos TCD
Perceptron de Múltiplas Camadas
Aprendizado por Quantização Vetorial
Função de Base Radial Gaussiana
Mistura de Especialistas
Automatic Speech Recognition
Neural Network
DCT Models
Multilayer Perceptron
Learning Vector Quantization
Gaussian Radial Basis Function
Mixture of Experts
Linguagem Formais e Automatos
title_short Reconhecimento de voz utilizando seleção dinâmica de redes neurais
title_full Reconhecimento de voz utilizando seleção dinâmica de redes neurais
title_fullStr Reconhecimento de voz utilizando seleção dinâmica de redes neurais
title_full_unstemmed Reconhecimento de voz utilizando seleção dinâmica de redes neurais
title_sort Reconhecimento de voz utilizando seleção dinâmica de redes neurais
author ROCHA, Priscila Lima
author_facet ROCHA, Priscila Lima
author_role author
dc.contributor.advisor1.fl_str_mv BARROS FILHO, Allan Kardec Duailibe
dc.contributor.advisor1ID.fl_str_mv 340.225.893-53
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0492330410079141
dc.contributor.advisor-co1.fl_str_mv SILVA, Washington Luís Santos
dc.contributor.advisor-co1ID.fl_str_mv 515.566.773-91
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/2097264664222196
dc.contributor.referee1.fl_str_mv PRINCIPE, José Carlos
dc.contributor.referee2.fl_str_mv SOUZA, Francisco das Chagas de
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/2405363087479257
dc.contributor.authorID.fl_str_mv 046.444.863-88
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/0210192910474011
dc.contributor.author.fl_str_mv ROCHA, Priscila Lima
contributor_str_mv BARROS FILHO, Allan Kardec Duailibe
SILVA, Washington Luís Santos
PRINCIPE, José Carlos
SOUZA, Francisco das Chagas de
dc.subject.por.fl_str_mv Redes Neurais
Reconhecimento Automático de Voz
Coeficientes Mel-Cepstrais
Modelos TCD
Perceptron de Múltiplas Camadas
Aprendizado por Quantização Vetorial
Função de Base Radial Gaussiana
Mistura de Especialistas
topic Redes Neurais
Reconhecimento Automático de Voz
Coeficientes Mel-Cepstrais
Modelos TCD
Perceptron de Múltiplas Camadas
Aprendizado por Quantização Vetorial
Função de Base Radial Gaussiana
Mistura de Especialistas
Automatic Speech Recognition
Neural Network
DCT Models
Multilayer Perceptron
Learning Vector Quantization
Gaussian Radial Basis Function
Mixture of Experts
Linguagem Formais e Automatos
dc.subject.eng.fl_str_mv Automatic Speech Recognition
Neural Network
DCT Models
Multilayer Perceptron
Learning Vector Quantization
Gaussian Radial Basis Function
Mixture of Experts
dc.subject.cnpq.fl_str_mv Linguagem Formais e Automatos
description This work proposes a hierarchical architecture composed of a set of neural networks specialists based on the ensemble method with dynamic selection of classifiers for application in speech recognition systems. The task of pattern recognition proposed in this work involves a group of 30 commands in the Brazilian Portuguese language. These commands are coded by a two-dimensional temporal matrix, resulting from the application of the Discrete Cosine Transformation (DCT) in the mel-ceptral coefficients. To avoid the problem of separability of the patterns, they are modified through a nonlinear transformation to a high-dimensional space through a suitable set of Gaussian Radial Base Functions (GRBF). The classification is done through the dynamic classifier selection method, in which Multilayer Perceptron (MLP) and Vector Vector Quantization Learning (LVQ) configurations are analyzed to constitute the multiple classifiers specialized in the subdivisions made in the total of classes to be recognized. The performances these configurations are evaluated during the training, validation and testing phases of the voice recognition system. Then, given a new test pattern, this is applied to the GRBF set, where each function is parameterized with the centroid and variance characteristics of the classes. Therefore, the GRBF that present the highest image value for the function indicates to which class this pattern is located, thus directing, to the specialist neural network which will provide the final classification result based on the local accuracy. At the end, the performance of the neural network configurations chosen for the composition of the multiple classifiers was verified. The result of the comparison between MLP and LVQ configurations for the proposed system showed that the overall accuracy rate using patterns of dimensions 4, 9 and 16 in the original feature space for the LVQ networks was 87.52 %, 88.39 % and 89.6 %, respectively. The MLP networks obtained an overall accuracy rate of 91.44 %, 93.15 % and 94.9 %, respectively
publishDate 2018
dc.date.accessioned.fl_str_mv 2018-03-28T20:40:03Z
dc.date.issued.fl_str_mv 2018-02-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ROCHA, Priscila Lima. Reconhecimento de voz utilizando seleção dinâmica de redes neurais. 2018. 110 f. Dissertação (Mestrado em Engenharia de Eletricidade) - Universidade Federal do Maranhão, São Luís, 2018.
dc.identifier.uri.fl_str_mv https://tedebc.ufma.br/jspui/handle/tede/2131
identifier_str_mv ROCHA, Priscila Lima. Reconhecimento de voz utilizando seleção dinâmica de redes neurais. 2018. 110 f. Dissertação (Mestrado em Engenharia de Eletricidade) - Universidade Federal do Maranhão, São Luís, 2018.
url https://tedebc.ufma.br/jspui/handle/tede/2131
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.publisher.program.fl_str_mv PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
dc.publisher.initials.fl_str_mv UFMA
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFMA
instname:Universidade Federal do Maranhão (UFMA)
instacron:UFMA
instname_str Universidade Federal do Maranhão (UFMA)
instacron_str UFMA
institution UFMA
reponame_str Biblioteca Digital de Teses e Dissertações da UFMA
collection Biblioteca Digital de Teses e Dissertações da UFMA
bitstream.url.fl_str_mv http://tedebc.ufma.br:8080/bitstream/tede/2131/2/PriscilaRocha.pdf
http://tedebc.ufma.br:8080/bitstream/tede/2131/1/license.txt
bitstream.checksum.fl_str_mv 684598b89c594f94a8037d441f2cb8c6
97eeade1fce43278e63fe063657f8083
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)
repository.mail.fl_str_mv repositorio@ufma.br||repositorio@ufma.br
_version_ 1853507996704833536