Métodos de auto-configuração em aplicações móveis par-a-par não estruturadas

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Diego Neves da Hora
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/1843/ESBF-8UEJ68
Resumo: Peer-to-Peer (P2P) applications must be configured according to the environment in which they are executed, in order to achieve the maximum performance. The identification of the ideal parameter configuration requires the characterization of the network in each deployment. Usually, P2P networks employ a generic default configuration, which is suitable to most scenarios, however its performance is worse than that of the best manual configuration. This work investigates methods to automatically configure the parameters of mobile P2P applications on runtime. We employ the MAPE architecture, proposed by IBM to create autonomic systems, in order to devise two solutions for P2P self-configuration. We propose the P-AIMD and P-ML controllers, which configure the application on run-time using the four phases of MAPE controllers, namely monitoring, analysis, planning and execution. In P-AIMD, the analysis and planning phase employ the Additive Increase and Multiplicative Decrease (AIMD) algorithm used in TCP for congestion control. In P-ML, we employ classic machine learning techniques in the analysis phase, and then employ a simple planning algorithm that uses the classification performed in the previous step to identify the need for configuration changes. The controllers were evaluated in mobile ad hoc networks running the Gnutella protocol, however the proposed solutions are applicable to any unstructured P2P protocol. We compared the performance of the proposed solutions against the Expanding Rings protocol, and the simulation results show that P-AIMD and P-ML present a success rate that is 5.18 and 2.71 percent inferior to that of the best manual configuration, respectively.
id UFMG_16b19d940cd55fc86e09b00fcd0e66e1
oai_identifier_str oai:repositorio.ufmg.br:1843/ESBF-8UEJ68
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Métodos de auto-configuração em aplicações móveis par-a-par não estruturadasComputaçãoRedes de computadoresRedes adaptativasMANETPar-a-ParAprendizado de máquinaPeer-to-Peer (P2P) applications must be configured according to the environment in which they are executed, in order to achieve the maximum performance. The identification of the ideal parameter configuration requires the characterization of the network in each deployment. Usually, P2P networks employ a generic default configuration, which is suitable to most scenarios, however its performance is worse than that of the best manual configuration. This work investigates methods to automatically configure the parameters of mobile P2P applications on runtime. We employ the MAPE architecture, proposed by IBM to create autonomic systems, in order to devise two solutions for P2P self-configuration. We propose the P-AIMD and P-ML controllers, which configure the application on run-time using the four phases of MAPE controllers, namely monitoring, analysis, planning and execution. In P-AIMD, the analysis and planning phase employ the Additive Increase and Multiplicative Decrease (AIMD) algorithm used in TCP for congestion control. In P-ML, we employ classic machine learning techniques in the analysis phase, and then employ a simple planning algorithm that uses the classification performed in the previous step to identify the need for configuration changes. The controllers were evaluated in mobile ad hoc networks running the Gnutella protocol, however the proposed solutions are applicable to any unstructured P2P protocol. We compared the performance of the proposed solutions against the Expanding Rings protocol, and the simulation results show that P-AIMD and P-ML present a success rate that is 5.18 and 2.71 percent inferior to that of the best manual configuration, respectively.Universidade Federal de Minas Gerais2019-08-11T18:37:12Z2025-09-08T23:57:00Z2019-08-11T18:37:12Z2012-05-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/1843/ESBF-8UEJ68Diego Neves da Horainfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-08T23:57:00Zoai:repositorio.ufmg.br:1843/ESBF-8UEJ68Repositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-08T23:57Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Métodos de auto-configuração em aplicações móveis par-a-par não estruturadas
title Métodos de auto-configuração em aplicações móveis par-a-par não estruturadas
spellingShingle Métodos de auto-configuração em aplicações móveis par-a-par não estruturadas
Diego Neves da Hora
Computação
Redes de computadores
Redes adaptativas
MANET
Par-a-Par
Aprendizado de máquina
title_short Métodos de auto-configuração em aplicações móveis par-a-par não estruturadas
title_full Métodos de auto-configuração em aplicações móveis par-a-par não estruturadas
title_fullStr Métodos de auto-configuração em aplicações móveis par-a-par não estruturadas
title_full_unstemmed Métodos de auto-configuração em aplicações móveis par-a-par não estruturadas
title_sort Métodos de auto-configuração em aplicações móveis par-a-par não estruturadas
author Diego Neves da Hora
author_facet Diego Neves da Hora
author_role author
dc.contributor.author.fl_str_mv Diego Neves da Hora
dc.subject.por.fl_str_mv Computação
Redes de computadores
Redes adaptativas
MANET
Par-a-Par
Aprendizado de máquina
topic Computação
Redes de computadores
Redes adaptativas
MANET
Par-a-Par
Aprendizado de máquina
description Peer-to-Peer (P2P) applications must be configured according to the environment in which they are executed, in order to achieve the maximum performance. The identification of the ideal parameter configuration requires the characterization of the network in each deployment. Usually, P2P networks employ a generic default configuration, which is suitable to most scenarios, however its performance is worse than that of the best manual configuration. This work investigates methods to automatically configure the parameters of mobile P2P applications on runtime. We employ the MAPE architecture, proposed by IBM to create autonomic systems, in order to devise two solutions for P2P self-configuration. We propose the P-AIMD and P-ML controllers, which configure the application on run-time using the four phases of MAPE controllers, namely monitoring, analysis, planning and execution. In P-AIMD, the analysis and planning phase employ the Additive Increase and Multiplicative Decrease (AIMD) algorithm used in TCP for congestion control. In P-ML, we employ classic machine learning techniques in the analysis phase, and then employ a simple planning algorithm that uses the classification performed in the previous step to identify the need for configuration changes. The controllers were evaluated in mobile ad hoc networks running the Gnutella protocol, however the proposed solutions are applicable to any unstructured P2P protocol. We compared the performance of the proposed solutions against the Expanding Rings protocol, and the simulation results show that P-AIMD and P-ML present a success rate that is 5.18 and 2.71 percent inferior to that of the best manual configuration, respectively.
publishDate 2012
dc.date.none.fl_str_mv 2012-05-16
2019-08-11T18:37:12Z
2019-08-11T18:37:12Z
2025-09-08T23:57:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1843/ESBF-8UEJ68
url https://hdl.handle.net/1843/ESBF-8UEJ68
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv repositorio@ufmg.br
_version_ 1856414026451386368