Parallel multi-speed pursuit-evasion game algorithms

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Renato Fernando dos Santos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Minas Gerais
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/1843/58297
Resumo: Pursuit-Evasion Game (PEG) consiste de um time de perseguidores tentando capturar um ou mais fugitivos. PEG é importante devido à sua aplicação em vigilância, busca e salvamento, robótica de desastres, defesa de fronteiras e assim por diante. Em geral, PEG requer tempo exponencial para calcular o número mínimo de perseguidores para capturar um fugitivo. Para mitigar isso, criamos um algoritmo paralelo ótimo para minimizar o tempo de captura no PEG. Dada uma topologia discreta, esse algoritmo também gera o número mínimo de perseguidores para capturar um fugitivo. Também foi estendido o algoritmo paralelo para outras versões como: heterogênea/jogadores multi-velocidade; a técnica pac-dot para aumentar a longevidade do evader em um jogo, e; uma estratégia de poda para a técnica pac-dot, para aumentar a sua escalabilidade. Além disso, descrevemos um algoritmo para alocação de recursos entre redes de agentes heterogêneos, para disponibilizar todos os recursos para cada agente heterogêneo da equipe, por meio do compartilhamento de recursos na vizinhança do nó. Cada equipe de agentes com todos os recursos disponíveis é associada a um fugitivo no jogo de perseguição e fuga. A abordagem é tolerante a falhas nos casos em que um recurso/agente quebra, sendo capaz de alocar um recurso compatível quando disponível. As principais contribuições desta tese são: Primeiro, foi descrito um algoritmo para alocação de recursos para múltiplas equipes de agentes com todos os recursos disponíveis. Em segundo lugar, aplicamos nossa abordagem de alocação de recursos para substituir um agente em tempo real se ele falhar. Em terceiro lugar, avaliamos nossa técnica aplicando-a ao PEG, desde a composição das equipes até a introdução e correção de falhas ao longo das simulações da instância. O desempenho do algoritmo paralelo foi avaliado pela métrica speedup. O algoritmo e suas extensões foram simulados e avaliados em diversas topologias, para validar a sua viabilidade a partir da discussão e avaliação de um conjunto de resultados. O algoritmo paralelo nos permite escalar até 8,13 vezes com 32 núcleos em comparação com o estado da arte. Considerando a complexidade do espaço de estados, a técnica de poda para o algoritmo pac-dot minimiza o espaço de estados e transições geradas, podendo lidar com um grande número de estados (≈830Mi) e transições (≈11Bi). Em geral, nossos algoritmos aumentam a escalabilidade e tornam viável o cálculo da estratégia ótima PEG para casos mais realistas. As simulações para estratégia de alocação de recursos foram realizadas para treze jogadores, simultaneamente. A partir da avaliação das simulações, a abordagem se mostrou eficiente para manter uma trajetória ótima até a captura dos fugitivos nos casos em que ocorre falha. Além disso, a abordagem escala para que muitos jogos ocorrerem simultaneamente.
id UFMG_1afbb750716e83e80be07fa495a1e020
oai_identifier_str oai:repositorio.ufmg.br:1843/58297
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Parallel multi-speed pursuit-evasion game algorithmsAlgoritmos paralelos para pursuit-evasion game de velocidades variadasComputação – TesesJogo de perseguição e fuga – TesesSistemas Multi-agentes – TesesRobôs heterogêneosPursuit-Evasion GameParallel AlgorithmMulti-agent SystemsOptimal PathHeterogeneous RobotsMulti-Team Resource AllocationPursuit-Evasion Game (PEG) consiste de um time de perseguidores tentando capturar um ou mais fugitivos. PEG é importante devido à sua aplicação em vigilância, busca e salvamento, robótica de desastres, defesa de fronteiras e assim por diante. Em geral, PEG requer tempo exponencial para calcular o número mínimo de perseguidores para capturar um fugitivo. Para mitigar isso, criamos um algoritmo paralelo ótimo para minimizar o tempo de captura no PEG. Dada uma topologia discreta, esse algoritmo também gera o número mínimo de perseguidores para capturar um fugitivo. Também foi estendido o algoritmo paralelo para outras versões como: heterogênea/jogadores multi-velocidade; a técnica pac-dot para aumentar a longevidade do evader em um jogo, e; uma estratégia de poda para a técnica pac-dot, para aumentar a sua escalabilidade. Além disso, descrevemos um algoritmo para alocação de recursos entre redes de agentes heterogêneos, para disponibilizar todos os recursos para cada agente heterogêneo da equipe, por meio do compartilhamento de recursos na vizinhança do nó. Cada equipe de agentes com todos os recursos disponíveis é associada a um fugitivo no jogo de perseguição e fuga. A abordagem é tolerante a falhas nos casos em que um recurso/agente quebra, sendo capaz de alocar um recurso compatível quando disponível. As principais contribuições desta tese são: Primeiro, foi descrito um algoritmo para alocação de recursos para múltiplas equipes de agentes com todos os recursos disponíveis. Em segundo lugar, aplicamos nossa abordagem de alocação de recursos para substituir um agente em tempo real se ele falhar. Em terceiro lugar, avaliamos nossa técnica aplicando-a ao PEG, desde a composição das equipes até a introdução e correção de falhas ao longo das simulações da instância. O desempenho do algoritmo paralelo foi avaliado pela métrica speedup. O algoritmo e suas extensões foram simulados e avaliados em diversas topologias, para validar a sua viabilidade a partir da discussão e avaliação de um conjunto de resultados. O algoritmo paralelo nos permite escalar até 8,13 vezes com 32 núcleos em comparação com o estado da arte. Considerando a complexidade do espaço de estados, a técnica de poda para o algoritmo pac-dot minimiza o espaço de estados e transições geradas, podendo lidar com um grande número de estados (≈830Mi) e transições (≈11Bi). Em geral, nossos algoritmos aumentam a escalabilidade e tornam viável o cálculo da estratégia ótima PEG para casos mais realistas. As simulações para estratégia de alocação de recursos foram realizadas para treze jogadores, simultaneamente. A partir da avaliação das simulações, a abordagem se mostrou eficiente para manter uma trajetória ótima até a captura dos fugitivos nos casos em que ocorre falha. Além disso, a abordagem escala para que muitos jogos ocorrerem simultaneamente.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorUniversidade Federal de Minas Gerais2023-08-28T16:26:12Z2025-09-08T22:58:34Z2023-08-28T16:26:12Z2023-06-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://hdl.handle.net/1843/58297engRenato Fernando dos Santosinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-08T22:58:34Zoai:repositorio.ufmg.br:1843/58297Repositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-08T22:58:34Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Parallel multi-speed pursuit-evasion game algorithms
Algoritmos paralelos para pursuit-evasion game de velocidades variadas
title Parallel multi-speed pursuit-evasion game algorithms
spellingShingle Parallel multi-speed pursuit-evasion game algorithms
Renato Fernando dos Santos
Computação – Teses
Jogo de perseguição e fuga – Teses
Sistemas Multi-agentes – Teses
Robôs heterogêneos
Pursuit-Evasion Game
Parallel Algorithm
Multi-agent Systems
Optimal Path
Heterogeneous Robots
Multi-Team Resource Allocation
title_short Parallel multi-speed pursuit-evasion game algorithms
title_full Parallel multi-speed pursuit-evasion game algorithms
title_fullStr Parallel multi-speed pursuit-evasion game algorithms
title_full_unstemmed Parallel multi-speed pursuit-evasion game algorithms
title_sort Parallel multi-speed pursuit-evasion game algorithms
author Renato Fernando dos Santos
author_facet Renato Fernando dos Santos
author_role author
dc.contributor.author.fl_str_mv Renato Fernando dos Santos
dc.subject.por.fl_str_mv Computação – Teses
Jogo de perseguição e fuga – Teses
Sistemas Multi-agentes – Teses
Robôs heterogêneos
Pursuit-Evasion Game
Parallel Algorithm
Multi-agent Systems
Optimal Path
Heterogeneous Robots
Multi-Team Resource Allocation
topic Computação – Teses
Jogo de perseguição e fuga – Teses
Sistemas Multi-agentes – Teses
Robôs heterogêneos
Pursuit-Evasion Game
Parallel Algorithm
Multi-agent Systems
Optimal Path
Heterogeneous Robots
Multi-Team Resource Allocation
description Pursuit-Evasion Game (PEG) consiste de um time de perseguidores tentando capturar um ou mais fugitivos. PEG é importante devido à sua aplicação em vigilância, busca e salvamento, robótica de desastres, defesa de fronteiras e assim por diante. Em geral, PEG requer tempo exponencial para calcular o número mínimo de perseguidores para capturar um fugitivo. Para mitigar isso, criamos um algoritmo paralelo ótimo para minimizar o tempo de captura no PEG. Dada uma topologia discreta, esse algoritmo também gera o número mínimo de perseguidores para capturar um fugitivo. Também foi estendido o algoritmo paralelo para outras versões como: heterogênea/jogadores multi-velocidade; a técnica pac-dot para aumentar a longevidade do evader em um jogo, e; uma estratégia de poda para a técnica pac-dot, para aumentar a sua escalabilidade. Além disso, descrevemos um algoritmo para alocação de recursos entre redes de agentes heterogêneos, para disponibilizar todos os recursos para cada agente heterogêneo da equipe, por meio do compartilhamento de recursos na vizinhança do nó. Cada equipe de agentes com todos os recursos disponíveis é associada a um fugitivo no jogo de perseguição e fuga. A abordagem é tolerante a falhas nos casos em que um recurso/agente quebra, sendo capaz de alocar um recurso compatível quando disponível. As principais contribuições desta tese são: Primeiro, foi descrito um algoritmo para alocação de recursos para múltiplas equipes de agentes com todos os recursos disponíveis. Em segundo lugar, aplicamos nossa abordagem de alocação de recursos para substituir um agente em tempo real se ele falhar. Em terceiro lugar, avaliamos nossa técnica aplicando-a ao PEG, desde a composição das equipes até a introdução e correção de falhas ao longo das simulações da instância. O desempenho do algoritmo paralelo foi avaliado pela métrica speedup. O algoritmo e suas extensões foram simulados e avaliados em diversas topologias, para validar a sua viabilidade a partir da discussão e avaliação de um conjunto de resultados. O algoritmo paralelo nos permite escalar até 8,13 vezes com 32 núcleos em comparação com o estado da arte. Considerando a complexidade do espaço de estados, a técnica de poda para o algoritmo pac-dot minimiza o espaço de estados e transições geradas, podendo lidar com um grande número de estados (≈830Mi) e transições (≈11Bi). Em geral, nossos algoritmos aumentam a escalabilidade e tornam viável o cálculo da estratégia ótima PEG para casos mais realistas. As simulações para estratégia de alocação de recursos foram realizadas para treze jogadores, simultaneamente. A partir da avaliação das simulações, a abordagem se mostrou eficiente para manter uma trajetória ótima até a captura dos fugitivos nos casos em que ocorre falha. Além disso, a abordagem escala para que muitos jogos ocorrerem simultaneamente.
publishDate 2023
dc.date.none.fl_str_mv 2023-08-28T16:26:12Z
2023-08-28T16:26:12Z
2023-06-02
2025-09-08T22:58:34Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1843/58297
url https://hdl.handle.net/1843/58297
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv repositorio@ufmg.br
_version_ 1856413961936699392