Qualitative analysis in many-objective optimization with visualization methods
| Ano de defesa: | 2017 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de Minas Gerais
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://hdl.handle.net/1843/42196 |
Resumo: | Problemas de otimização com muitos objetivos apresentam vários desafios para os métodos de otimização atuais. Dentre essas, a visualização de soluções é um obstáculo importante para a interpretação dos resultados. Ter a habilidade de visualizar resultados parciais ou finais, de um problema multi-objetivo com várias dimensões, fornece vantagens chave para o otimizador bem como para o tomador de decisões, com relação a compreensão do problema e interpretação de resultados. Neste estudo, propõe-se uma ferramenta de visualização multi-propósito a ser aplicada em um processo de design evolucionário. A ferramenta de visualização proposta, denominada Visualização e Mapeamento em Arcos (VMA), contém duas partes e utilizações diferentes. VMA fornece duas importantes categorias de informação qualitativa sobre espaços de várias dimensões. A primeira parte da ferramenta mapeia as soluções do espaço de alta dimensão para as formas 2D, com base na extração da relação entre os objetivos. Em seguida, a segunda parte, mapeia as soluções do espaço de objetivos de alta dimensionalidade em uma forma 2D de espalhamento, baseada na norma e informações de ângulo entre os objetivos. A abordagem preserva algumas características desejáveis do espaço de objetivos, como a forma da Fronteira Pareto, sua localização, relações entre os objetivos, etc. Com o apoio desta ferramenta o decisor pode obter informações sobre a forma da frente de Pareto, a área explorada pelos algoritmos, uma estimativa qualitativa do desempenho do algoritmo, relação entre os objetivos, localização das soluções e sua dispersão. Além disso, este aplicativo tem escalabilidade e flexibilidade em relação ao número de objetivos e tamanho da população. Adicionalmente, o VMA permite ao decisor identificar visualmente regiões pouco exploradas do espaço de objetivos e determinar vetores de peso para guiar a busca por uma região específica ou preferida. Finalmente, os resultados experimentais mostram que esta ferramenta pode desempenhar um papel de métrica de desempenho e auxiliar o processo evolucionário de busca por soluções. |
| id |
UFMG_27f143ff79df3deab967df5c3ca28934 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufmg.br:1843/42196 |
| network_acronym_str |
UFMG |
| network_name_str |
Repositório Institucional da UFMG |
| repository_id_str |
|
| spelling |
Qualitative analysis in many-objective optimization with visualization methodsAnálise qualitativa em otimização de muitos objetivos com métodos de visualizaçãoEngenharia elétricaOtimizaçãoPesquisa qualitativaProcesso decisórioVisualização de dadosData visualizationMany-objective optimizationQualitative analysisQuantitative analysisObjective relationshipMulti criteria decision makingIndividual distributionProblemas de otimização com muitos objetivos apresentam vários desafios para os métodos de otimização atuais. Dentre essas, a visualização de soluções é um obstáculo importante para a interpretação dos resultados. Ter a habilidade de visualizar resultados parciais ou finais, de um problema multi-objetivo com várias dimensões, fornece vantagens chave para o otimizador bem como para o tomador de decisões, com relação a compreensão do problema e interpretação de resultados. Neste estudo, propõe-se uma ferramenta de visualização multi-propósito a ser aplicada em um processo de design evolucionário. A ferramenta de visualização proposta, denominada Visualização e Mapeamento em Arcos (VMA), contém duas partes e utilizações diferentes. VMA fornece duas importantes categorias de informação qualitativa sobre espaços de várias dimensões. A primeira parte da ferramenta mapeia as soluções do espaço de alta dimensão para as formas 2D, com base na extração da relação entre os objetivos. Em seguida, a segunda parte, mapeia as soluções do espaço de objetivos de alta dimensionalidade em uma forma 2D de espalhamento, baseada na norma e informações de ângulo entre os objetivos. A abordagem preserva algumas características desejáveis do espaço de objetivos, como a forma da Fronteira Pareto, sua localização, relações entre os objetivos, etc. Com o apoio desta ferramenta o decisor pode obter informações sobre a forma da frente de Pareto, a área explorada pelos algoritmos, uma estimativa qualitativa do desempenho do algoritmo, relação entre os objetivos, localização das soluções e sua dispersão. Além disso, este aplicativo tem escalabilidade e flexibilidade em relação ao número de objetivos e tamanho da população. Adicionalmente, o VMA permite ao decisor identificar visualmente regiões pouco exploradas do espaço de objetivos e determinar vetores de peso para guiar a busca por uma região específica ou preferida. Finalmente, os resultados experimentais mostram que esta ferramenta pode desempenhar um papel de métrica de desempenho e auxiliar o processo evolucionário de busca por soluções.CNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoUniversidade Federal de Minas Gerais2022-06-02T16:57:07Z2025-09-09T00:11:02Z2022-06-02T16:57:07Z2017-06-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://hdl.handle.net/1843/42196engRoozbeh Haghnazar Koochaksaraeiinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-09T00:11:02Zoai:repositorio.ufmg.br:1843/42196Repositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-09T00:11:02Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false |
| dc.title.none.fl_str_mv |
Qualitative analysis in many-objective optimization with visualization methods Análise qualitativa em otimização de muitos objetivos com métodos de visualização |
| title |
Qualitative analysis in many-objective optimization with visualization methods |
| spellingShingle |
Qualitative analysis in many-objective optimization with visualization methods Roozbeh Haghnazar Koochaksaraei Engenharia elétrica Otimização Pesquisa qualitativa Processo decisório Visualização de dados Data visualization Many-objective optimization Qualitative analysis Quantitative analysis Objective relationship Multi criteria decision making Individual distribution |
| title_short |
Qualitative analysis in many-objective optimization with visualization methods |
| title_full |
Qualitative analysis in many-objective optimization with visualization methods |
| title_fullStr |
Qualitative analysis in many-objective optimization with visualization methods |
| title_full_unstemmed |
Qualitative analysis in many-objective optimization with visualization methods |
| title_sort |
Qualitative analysis in many-objective optimization with visualization methods |
| author |
Roozbeh Haghnazar Koochaksaraei |
| author_facet |
Roozbeh Haghnazar Koochaksaraei |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Roozbeh Haghnazar Koochaksaraei |
| dc.subject.por.fl_str_mv |
Engenharia elétrica Otimização Pesquisa qualitativa Processo decisório Visualização de dados Data visualization Many-objective optimization Qualitative analysis Quantitative analysis Objective relationship Multi criteria decision making Individual distribution |
| topic |
Engenharia elétrica Otimização Pesquisa qualitativa Processo decisório Visualização de dados Data visualization Many-objective optimization Qualitative analysis Quantitative analysis Objective relationship Multi criteria decision making Individual distribution |
| description |
Problemas de otimização com muitos objetivos apresentam vários desafios para os métodos de otimização atuais. Dentre essas, a visualização de soluções é um obstáculo importante para a interpretação dos resultados. Ter a habilidade de visualizar resultados parciais ou finais, de um problema multi-objetivo com várias dimensões, fornece vantagens chave para o otimizador bem como para o tomador de decisões, com relação a compreensão do problema e interpretação de resultados. Neste estudo, propõe-se uma ferramenta de visualização multi-propósito a ser aplicada em um processo de design evolucionário. A ferramenta de visualização proposta, denominada Visualização e Mapeamento em Arcos (VMA), contém duas partes e utilizações diferentes. VMA fornece duas importantes categorias de informação qualitativa sobre espaços de várias dimensões. A primeira parte da ferramenta mapeia as soluções do espaço de alta dimensão para as formas 2D, com base na extração da relação entre os objetivos. Em seguida, a segunda parte, mapeia as soluções do espaço de objetivos de alta dimensionalidade em uma forma 2D de espalhamento, baseada na norma e informações de ângulo entre os objetivos. A abordagem preserva algumas características desejáveis do espaço de objetivos, como a forma da Fronteira Pareto, sua localização, relações entre os objetivos, etc. Com o apoio desta ferramenta o decisor pode obter informações sobre a forma da frente de Pareto, a área explorada pelos algoritmos, uma estimativa qualitativa do desempenho do algoritmo, relação entre os objetivos, localização das soluções e sua dispersão. Além disso, este aplicativo tem escalabilidade e flexibilidade em relação ao número de objetivos e tamanho da população. Adicionalmente, o VMA permite ao decisor identificar visualmente regiões pouco exploradas do espaço de objetivos e determinar vetores de peso para guiar a busca por uma região específica ou preferida. Finalmente, os resultados experimentais mostram que esta ferramenta pode desempenhar um papel de métrica de desempenho e auxiliar o processo evolucionário de busca por soluções. |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-06-23 2022-06-02T16:57:07Z 2022-06-02T16:57:07Z 2025-09-09T00:11:02Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1843/42196 |
| url |
https://hdl.handle.net/1843/42196 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
| publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMG instname:Universidade Federal de Minas Gerais (UFMG) instacron:UFMG |
| instname_str |
Universidade Federal de Minas Gerais (UFMG) |
| instacron_str |
UFMG |
| institution |
UFMG |
| reponame_str |
Repositório Institucional da UFMG |
| collection |
Repositório Institucional da UFMG |
| repository.name.fl_str_mv |
Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG) |
| repository.mail.fl_str_mv |
repositorio@ufmg.br |
| _version_ |
1856414111093489664 |