Composição musical algorítmica utilizando redes geradoras adversárias e algoritmos genéticos

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Matheus Bitarães de Novaes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/1843/53936
Resumo: The application of Computation Intelligence for musical pieces generation is present in literature since the early moments of this research field. Since then, algorithmic art has been following the technological advances in the field and, since it is a subject that can be approached by many sides, there are a diverse set of approaches in literature to emulation of the artistic process by computers. Among the research field explored for computational musical pieces generation, Genetic Algorithms and Neural Networks have significant presence and, as GANs have become more widely used, there has been an increase in the use of them for creating art. This work proposes an architecture composed of a genetic algorithm whose initial population is fed by generative adversarial networks (GANs) specialized in generating melodies for certain harmonic functions. The fitness function of the genetic algorithm is a weighted sum of heuristic methods for evaluating quality, where the weights of each function are assigned by the user, before requesting the melody. A data augmentation statregy for the GAN training data was proposed and experimentally validated. Another experiment performed was a comparison between the quality of the melodies generated by the proposed architecture, a GAN and an LSTM network. The effects of utilizing the Discriminator’s evaluation on the fitness function of the generic algorithm were also experimented in a third experiment. The statistical comparison give evidences that this approach enhances melody quality in comparisson with using the fitness function without Discriminator’s evaluation.
id UFMG_368a6c4e6c11d433520be2299e82292b
oai_identifier_str oai:repositorio.ufmg.br:1843/53936
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Composição musical algorítmica utilizando redes geradoras adversárias e algoritmos genéticosAlgorithmic musical composition using generative adversarial networks and genetic algorithmsEngenharia elétricaInteligência computacionalRedes neurais (Computação)Algoritmos genéticosMúsicaInteligência computacionalRedes geradoras adversáriasGANsRedes neuraisAlgoritmos genéticosMúsicaMúsica algorítmicaThe application of Computation Intelligence for musical pieces generation is present in literature since the early moments of this research field. Since then, algorithmic art has been following the technological advances in the field and, since it is a subject that can be approached by many sides, there are a diverse set of approaches in literature to emulation of the artistic process by computers. Among the research field explored for computational musical pieces generation, Genetic Algorithms and Neural Networks have significant presence and, as GANs have become more widely used, there has been an increase in the use of them for creating art. This work proposes an architecture composed of a genetic algorithm whose initial population is fed by generative adversarial networks (GANs) specialized in generating melodies for certain harmonic functions. The fitness function of the genetic algorithm is a weighted sum of heuristic methods for evaluating quality, where the weights of each function are assigned by the user, before requesting the melody. A data augmentation statregy for the GAN training data was proposed and experimentally validated. Another experiment performed was a comparison between the quality of the melodies generated by the proposed architecture, a GAN and an LSTM network. The effects of utilizing the Discriminator’s evaluation on the fitness function of the generic algorithm were also experimented in a third experiment. The statistical comparison give evidences that this approach enhances melody quality in comparisson with using the fitness function without Discriminator’s evaluation.Universidade Federal de Minas Gerais2023-05-25T18:27:45Z2025-09-09T01:00:02Z2023-05-25T18:27:45Z2023-03-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/1843/53936porMatheus Bitarães de Novaesinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-09T01:00:02Zoai:repositorio.ufmg.br:1843/53936Repositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-09T01:00:02Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Composição musical algorítmica utilizando redes geradoras adversárias e algoritmos genéticos
Algorithmic musical composition using generative adversarial networks and genetic algorithms
title Composição musical algorítmica utilizando redes geradoras adversárias e algoritmos genéticos
spellingShingle Composição musical algorítmica utilizando redes geradoras adversárias e algoritmos genéticos
Matheus Bitarães de Novaes
Engenharia elétrica
Inteligência computacional
Redes neurais (Computação)
Algoritmos genéticos
Música
Inteligência computacional
Redes geradoras adversárias
GANs
Redes neurais
Algoritmos genéticos
Música
Música algorítmica
title_short Composição musical algorítmica utilizando redes geradoras adversárias e algoritmos genéticos
title_full Composição musical algorítmica utilizando redes geradoras adversárias e algoritmos genéticos
title_fullStr Composição musical algorítmica utilizando redes geradoras adversárias e algoritmos genéticos
title_full_unstemmed Composição musical algorítmica utilizando redes geradoras adversárias e algoritmos genéticos
title_sort Composição musical algorítmica utilizando redes geradoras adversárias e algoritmos genéticos
author Matheus Bitarães de Novaes
author_facet Matheus Bitarães de Novaes
author_role author
dc.contributor.author.fl_str_mv Matheus Bitarães de Novaes
dc.subject.por.fl_str_mv Engenharia elétrica
Inteligência computacional
Redes neurais (Computação)
Algoritmos genéticos
Música
Inteligência computacional
Redes geradoras adversárias
GANs
Redes neurais
Algoritmos genéticos
Música
Música algorítmica
topic Engenharia elétrica
Inteligência computacional
Redes neurais (Computação)
Algoritmos genéticos
Música
Inteligência computacional
Redes geradoras adversárias
GANs
Redes neurais
Algoritmos genéticos
Música
Música algorítmica
description The application of Computation Intelligence for musical pieces generation is present in literature since the early moments of this research field. Since then, algorithmic art has been following the technological advances in the field and, since it is a subject that can be approached by many sides, there are a diverse set of approaches in literature to emulation of the artistic process by computers. Among the research field explored for computational musical pieces generation, Genetic Algorithms and Neural Networks have significant presence and, as GANs have become more widely used, there has been an increase in the use of them for creating art. This work proposes an architecture composed of a genetic algorithm whose initial population is fed by generative adversarial networks (GANs) specialized in generating melodies for certain harmonic functions. The fitness function of the genetic algorithm is a weighted sum of heuristic methods for evaluating quality, where the weights of each function are assigned by the user, before requesting the melody. A data augmentation statregy for the GAN training data was proposed and experimentally validated. Another experiment performed was a comparison between the quality of the melodies generated by the proposed architecture, a GAN and an LSTM network. The effects of utilizing the Discriminator’s evaluation on the fitness function of the generic algorithm were also experimented in a third experiment. The statistical comparison give evidences that this approach enhances melody quality in comparisson with using the fitness function without Discriminator’s evaluation.
publishDate 2023
dc.date.none.fl_str_mv 2023-05-25T18:27:45Z
2023-05-25T18:27:45Z
2023-03-28
2025-09-09T01:00:02Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1843/53936
url https://hdl.handle.net/1843/53936
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv repositorio@ufmg.br
_version_ 1856414127468052480