Reconhecimento automático de sinais da Libras : desenvolvimento da base de dados MINDS-Libras e modelos de redes convolucionais
| Ano de defesa: | 2021 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Minas Gerais
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://hdl.handle.net/1843/39785 |
Resumo: | The automatic recognition of Sign Language has been a challenge for the Computational Intelligence area, given the visual-gestural nature that configures this complex communication system. This thesis falls within this context and focuses efforts on the Brazilian Sign Language, Libras. For this purpose, a new database called MINDS-Libras has been proposed. It contains (i) RGB videos, (ii) videos with depth information, (iii) information from 25 points/joints of the body and from (iv) 1347 points of the face of the signaller. Each of the 20 signs that build this base were recorded 5 times by 12 signallers, totaling 1200 samples. Using this data, two different Deep Learning architectures were proposed for recognizing the MINDS-Libras signs. The first one was a 3D Convolutional Neural Network by using videos, and the second a Temporal Convolutional Neural Network for the manual trajectory. The best leave-one-signaller-out was that based in the hand movement, and this can be considered the most important parameter for sign formation. The results also indicate that this approach is feasible for the Libras signs recognition. New perspectives may be opened with the expansion of the database and add more signallers in the process of recording (new) signs. |
| id |
UFMG_4b89616e6b0db6f3771be41f64b2d553 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufmg.br:1843/39785 |
| network_acronym_str |
UFMG |
| network_name_str |
Repositório Institucional da UFMG |
| repository_id_str |
|
| spelling |
Reconhecimento automático de sinais da Libras : desenvolvimento da base de dados MINDS-Libras e modelos de redes convolucionaisEngenharia elétricaAprendizado profundoLíngua brasileira de sinaisLíngua de sinaisRedes neurais convolucionaisAprendizado profundoRedes neurais convolucionaisReconhecimento automático da LibrasLíngua de sinaisLibrasThe automatic recognition of Sign Language has been a challenge for the Computational Intelligence area, given the visual-gestural nature that configures this complex communication system. This thesis falls within this context and focuses efforts on the Brazilian Sign Language, Libras. For this purpose, a new database called MINDS-Libras has been proposed. It contains (i) RGB videos, (ii) videos with depth information, (iii) information from 25 points/joints of the body and from (iv) 1347 points of the face of the signaller. Each of the 20 signs that build this base were recorded 5 times by 12 signallers, totaling 1200 samples. Using this data, two different Deep Learning architectures were proposed for recognizing the MINDS-Libras signs. The first one was a 3D Convolutional Neural Network by using videos, and the second a Temporal Convolutional Neural Network for the manual trajectory. The best leave-one-signaller-out was that based in the hand movement, and this can be considered the most important parameter for sign formation. The results also indicate that this approach is feasible for the Libras signs recognition. New perspectives may be opened with the expansion of the database and add more signallers in the process of recording (new) signs.CNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoUniversidade Federal de Minas Gerais2022-03-03T19:47:41Z2025-09-08T22:55:37Z2022-03-03T19:47:41Z2021-07-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://hdl.handle.net/1843/39785porhttp://creativecommons.org/licenses/by-nc-nd/3.0/pt/info:eu-repo/semantics/openAccessTamires Martins Rezendereponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-08T22:55:37Zoai:repositorio.ufmg.br:1843/39785Repositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-08T22:55:37Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false |
| dc.title.none.fl_str_mv |
Reconhecimento automático de sinais da Libras : desenvolvimento da base de dados MINDS-Libras e modelos de redes convolucionais |
| title |
Reconhecimento automático de sinais da Libras : desenvolvimento da base de dados MINDS-Libras e modelos de redes convolucionais |
| spellingShingle |
Reconhecimento automático de sinais da Libras : desenvolvimento da base de dados MINDS-Libras e modelos de redes convolucionais Tamires Martins Rezende Engenharia elétrica Aprendizado profundo Língua brasileira de sinais Língua de sinais Redes neurais convolucionais Aprendizado profundo Redes neurais convolucionais Reconhecimento automático da Libras Língua de sinais Libras |
| title_short |
Reconhecimento automático de sinais da Libras : desenvolvimento da base de dados MINDS-Libras e modelos de redes convolucionais |
| title_full |
Reconhecimento automático de sinais da Libras : desenvolvimento da base de dados MINDS-Libras e modelos de redes convolucionais |
| title_fullStr |
Reconhecimento automático de sinais da Libras : desenvolvimento da base de dados MINDS-Libras e modelos de redes convolucionais |
| title_full_unstemmed |
Reconhecimento automático de sinais da Libras : desenvolvimento da base de dados MINDS-Libras e modelos de redes convolucionais |
| title_sort |
Reconhecimento automático de sinais da Libras : desenvolvimento da base de dados MINDS-Libras e modelos de redes convolucionais |
| author |
Tamires Martins Rezende |
| author_facet |
Tamires Martins Rezende |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Tamires Martins Rezende |
| dc.subject.por.fl_str_mv |
Engenharia elétrica Aprendizado profundo Língua brasileira de sinais Língua de sinais Redes neurais convolucionais Aprendizado profundo Redes neurais convolucionais Reconhecimento automático da Libras Língua de sinais Libras |
| topic |
Engenharia elétrica Aprendizado profundo Língua brasileira de sinais Língua de sinais Redes neurais convolucionais Aprendizado profundo Redes neurais convolucionais Reconhecimento automático da Libras Língua de sinais Libras |
| description |
The automatic recognition of Sign Language has been a challenge for the Computational Intelligence area, given the visual-gestural nature that configures this complex communication system. This thesis falls within this context and focuses efforts on the Brazilian Sign Language, Libras. For this purpose, a new database called MINDS-Libras has been proposed. It contains (i) RGB videos, (ii) videos with depth information, (iii) information from 25 points/joints of the body and from (iv) 1347 points of the face of the signaller. Each of the 20 signs that build this base were recorded 5 times by 12 signallers, totaling 1200 samples. Using this data, two different Deep Learning architectures were proposed for recognizing the MINDS-Libras signs. The first one was a 3D Convolutional Neural Network by using videos, and the second a Temporal Convolutional Neural Network for the manual trajectory. The best leave-one-signaller-out was that based in the hand movement, and this can be considered the most important parameter for sign formation. The results also indicate that this approach is feasible for the Libras signs recognition. New perspectives may be opened with the expansion of the database and add more signallers in the process of recording (new) signs. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-07-23 2022-03-03T19:47:41Z 2022-03-03T19:47:41Z 2025-09-08T22:55:37Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1843/39785 |
| url |
https://hdl.handle.net/1843/39785 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/pt/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/pt/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
| publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMG instname:Universidade Federal de Minas Gerais (UFMG) instacron:UFMG |
| instname_str |
Universidade Federal de Minas Gerais (UFMG) |
| instacron_str |
UFMG |
| institution |
UFMG |
| reponame_str |
Repositório Institucional da UFMG |
| collection |
Repositório Institucional da UFMG |
| repository.name.fl_str_mv |
Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG) |
| repository.mail.fl_str_mv |
repositorio@ufmg.br |
| _version_ |
1856414068672299008 |