Integração semântica de dados tabulares em CSV: proposta de arcabouço comparativo de ferramentas

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Rafael Rocha
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/1843/36618
Resumo: The semantic web represents knowledge in a human-readable and machine-readable form. Linked data semantically associate concepts from different sources, and the reuse of data and vocabularies enriches information systems on the web, especially those aimed at organizing scientific research data. Such systems manipulate tabular data in two-dimensional degrees (CSV files - Comma Separated Values) with their associated metadata in the file header (first line of the file). In general, CSV metadata is insufficient to enable semantic integration and interoperability, that is, the ability of systems to communicate transparently (or as closely as possible) with other similar systems (or not). To contribute to research, CSV files must be integrated semantically and stored in data repositories. Tabular data must have its meanings made explicit so that the concepts treated are not lost or have their meanings distorted. The process of semantic data integration is performed by tools that automate the process, in order to systematize and streamline the work, minimizing human errors. These tools have different characteristics and implementations and the features (or functionalities) available in each of them impact on their ability to integrate data generating linked data for semantic web. A given data integration project can fail if the tool chosen to generate linked data does not have the features available to the project. Several comparison frameworks have been proposed to evaluate tools in the generation of linked data, but none of them uses a scale of values that simplifies the evaluation and summary of the results of the analyzes. This research proposes a comparison framework for semantic integration tools of tabular data in CSV. The features of the framework are based on the scientific literature with points arranged on a positive number line. In the methodological path, a CSV file is used in the semantic integration process, then the tools are evaluated in the light of the comparison framework. Thus, having the tools on a positive number line, it is possible to know which of them have the most adequate features for a given integration project or even the best evaluated features. The results of this work are useful for all those who need to evaluate tools in their semantic data integration projects, especially in scientific research, since the data connected conceptually contribute greatly to them.
id UFMG_4e3334e03f24bea81adc7aa38e594a52
oai_identifier_str oai:repositorio.ufmg.br:1843/36618
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Integração semântica de dados tabulares em CSV: proposta de arcabouço comparativo de ferramentasCiência da informaçãoIntegração semânticaDados tabularesFerramentas para integração semânticaArcabouço comparativoWeb semânticaDados conectadosThe semantic web represents knowledge in a human-readable and machine-readable form. Linked data semantically associate concepts from different sources, and the reuse of data and vocabularies enriches information systems on the web, especially those aimed at organizing scientific research data. Such systems manipulate tabular data in two-dimensional degrees (CSV files - Comma Separated Values) with their associated metadata in the file header (first line of the file). In general, CSV metadata is insufficient to enable semantic integration and interoperability, that is, the ability of systems to communicate transparently (or as closely as possible) with other similar systems (or not). To contribute to research, CSV files must be integrated semantically and stored in data repositories. Tabular data must have its meanings made explicit so that the concepts treated are not lost or have their meanings distorted. The process of semantic data integration is performed by tools that automate the process, in order to systematize and streamline the work, minimizing human errors. These tools have different characteristics and implementations and the features (or functionalities) available in each of them impact on their ability to integrate data generating linked data for semantic web. A given data integration project can fail if the tool chosen to generate linked data does not have the features available to the project. Several comparison frameworks have been proposed to evaluate tools in the generation of linked data, but none of them uses a scale of values that simplifies the evaluation and summary of the results of the analyzes. This research proposes a comparison framework for semantic integration tools of tabular data in CSV. The features of the framework are based on the scientific literature with points arranged on a positive number line. In the methodological path, a CSV file is used in the semantic integration process, then the tools are evaluated in the light of the comparison framework. Thus, having the tools on a positive number line, it is possible to know which of them have the most adequate features for a given integration project or even the best evaluated features. The results of this work are useful for all those who need to evaluate tools in their semantic data integration projects, especially in scientific research, since the data connected conceptually contribute greatly to them.Universidade Federal de Minas Gerais2021-06-30T12:43:03Z2025-09-08T23:35:51Z2021-06-30T12:43:03Z2021-02-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/1843/36618porhttp://creativecommons.org/licenses/by-nd/3.0/pt/info:eu-repo/semantics/openAccessRafael Rochareponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-08T23:35:51Zoai:repositorio.ufmg.br:1843/36618Repositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-08T23:35:51Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Integração semântica de dados tabulares em CSV: proposta de arcabouço comparativo de ferramentas
title Integração semântica de dados tabulares em CSV: proposta de arcabouço comparativo de ferramentas
spellingShingle Integração semântica de dados tabulares em CSV: proposta de arcabouço comparativo de ferramentas
Rafael Rocha
Ciência da informação
Integração semântica
Dados tabulares
Ferramentas para integração semântica
Arcabouço comparativo
Web semântica
Dados conectados
title_short Integração semântica de dados tabulares em CSV: proposta de arcabouço comparativo de ferramentas
title_full Integração semântica de dados tabulares em CSV: proposta de arcabouço comparativo de ferramentas
title_fullStr Integração semântica de dados tabulares em CSV: proposta de arcabouço comparativo de ferramentas
title_full_unstemmed Integração semântica de dados tabulares em CSV: proposta de arcabouço comparativo de ferramentas
title_sort Integração semântica de dados tabulares em CSV: proposta de arcabouço comparativo de ferramentas
author Rafael Rocha
author_facet Rafael Rocha
author_role author
dc.contributor.author.fl_str_mv Rafael Rocha
dc.subject.por.fl_str_mv Ciência da informação
Integração semântica
Dados tabulares
Ferramentas para integração semântica
Arcabouço comparativo
Web semântica
Dados conectados
topic Ciência da informação
Integração semântica
Dados tabulares
Ferramentas para integração semântica
Arcabouço comparativo
Web semântica
Dados conectados
description The semantic web represents knowledge in a human-readable and machine-readable form. Linked data semantically associate concepts from different sources, and the reuse of data and vocabularies enriches information systems on the web, especially those aimed at organizing scientific research data. Such systems manipulate tabular data in two-dimensional degrees (CSV files - Comma Separated Values) with their associated metadata in the file header (first line of the file). In general, CSV metadata is insufficient to enable semantic integration and interoperability, that is, the ability of systems to communicate transparently (or as closely as possible) with other similar systems (or not). To contribute to research, CSV files must be integrated semantically and stored in data repositories. Tabular data must have its meanings made explicit so that the concepts treated are not lost or have their meanings distorted. The process of semantic data integration is performed by tools that automate the process, in order to systematize and streamline the work, minimizing human errors. These tools have different characteristics and implementations and the features (or functionalities) available in each of them impact on their ability to integrate data generating linked data for semantic web. A given data integration project can fail if the tool chosen to generate linked data does not have the features available to the project. Several comparison frameworks have been proposed to evaluate tools in the generation of linked data, but none of them uses a scale of values that simplifies the evaluation and summary of the results of the analyzes. This research proposes a comparison framework for semantic integration tools of tabular data in CSV. The features of the framework are based on the scientific literature with points arranged on a positive number line. In the methodological path, a CSV file is used in the semantic integration process, then the tools are evaluated in the light of the comparison framework. Thus, having the tools on a positive number line, it is possible to know which of them have the most adequate features for a given integration project or even the best evaluated features. The results of this work are useful for all those who need to evaluate tools in their semantic data integration projects, especially in scientific research, since the data connected conceptually contribute greatly to them.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-30T12:43:03Z
2021-06-30T12:43:03Z
2021-02-22
2025-09-08T23:35:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1843/36618
url https://hdl.handle.net/1843/36618
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nd/3.0/pt/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nd/3.0/pt/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv repositorio@ufmg.br
_version_ 1856413964565479424