Automatic pain assessment in fetuses through transfer learning

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Thiago Melo de Oliveira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Minas Gerais
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/1843/72118
Resumo: A exposição prolongada a circunstâncias de dor pode ter muitos efeitos colaterais na vida de um feto e causar consequências negativas no seu desenvolvimento. Assim, a avaliação e gestão da dor torna-se necessária para identificar esses cenários precocemente. Embora existam numerosas escalas de dor para auxiliar na avaliação da dor em recém-nascidos, até recentemente, não existia um método para detectar dor em fetos. Com base nessas escalas, algumas pesquisas foram desenvolvidas para avaliar automaticamente a dor por meio da análise de imagens com ajuda computacional. Ainda assim, nenhum trabalho desse tipo havia sido desenvolvido especificamente para fetos. Nesse cenário, propomos o uso de redes neurais convolucionais profundas para construir um modelo de aprendizado capaz de detectar automaticamente a presença de dor em fetos. Fazemos isso por meio da avaliação de suas expressões faciais em imagens coletadas de máquinas de ultrassom 4-D. Utilizando técnicas de transferência de aprendizado, partimos de uma rede pré-treinada na tarefa de reconhecimento facial e confirmamos que a transferência de aprendizado de uma tarefa semelhante obteve um desempenho melhor do que se fosse feita a partir de um conjunto de dados de propósito geral. Avaliamos nosso modelo em imagens extraídas de 13 gravações de vídeo de fetos submetidos a estímulos dolorosos e não dolorosos e alcançamos uma precisão de 84,8% na tarefa de discriminar imagens de dor daquelas em um grupo de controle não doloroso. Nossos resultados demonstram a eficácia da aplicação de tais métodos com imagens fetais e, acima de tudo, mostram que é possível desenvolver um modelo para detectar automaticamente dor em fetos.
id UFMG_7d24fda1592481ced3ea70ed01edc798
oai_identifier_str oai:repositorio.ufmg.br:1843/72118
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Automatic pain assessment in fetuses through transfer learningComputação – TesesAprendizado profundo – TesesRedes neurais convolucionais – TesesFeto – Dor – Diagnóstico – Tesesdeep learningtransfer learningfetal painautomatic pain assessmentA exposição prolongada a circunstâncias de dor pode ter muitos efeitos colaterais na vida de um feto e causar consequências negativas no seu desenvolvimento. Assim, a avaliação e gestão da dor torna-se necessária para identificar esses cenários precocemente. Embora existam numerosas escalas de dor para auxiliar na avaliação da dor em recém-nascidos, até recentemente, não existia um método para detectar dor em fetos. Com base nessas escalas, algumas pesquisas foram desenvolvidas para avaliar automaticamente a dor por meio da análise de imagens com ajuda computacional. Ainda assim, nenhum trabalho desse tipo havia sido desenvolvido especificamente para fetos. Nesse cenário, propomos o uso de redes neurais convolucionais profundas para construir um modelo de aprendizado capaz de detectar automaticamente a presença de dor em fetos. Fazemos isso por meio da avaliação de suas expressões faciais em imagens coletadas de máquinas de ultrassom 4-D. Utilizando técnicas de transferência de aprendizado, partimos de uma rede pré-treinada na tarefa de reconhecimento facial e confirmamos que a transferência de aprendizado de uma tarefa semelhante obteve um desempenho melhor do que se fosse feita a partir de um conjunto de dados de propósito geral. Avaliamos nosso modelo em imagens extraídas de 13 gravações de vídeo de fetos submetidos a estímulos dolorosos e não dolorosos e alcançamos uma precisão de 84,8% na tarefa de discriminar imagens de dor daquelas em um grupo de controle não doloroso. Nossos resultados demonstram a eficácia da aplicação de tais métodos com imagens fetais e, acima de tudo, mostram que é possível desenvolver um modelo para detectar automaticamente dor em fetos.Universidade Federal de Minas Gerais2024-07-30T20:52:26Z2025-09-08T23:54:07Z2024-07-30T20:52:26Z2020-03-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/1843/72118enghttp://creativecommons.org/licenses/by-nc-nd/3.0/pt/info:eu-repo/semantics/openAccessThiago Melo de Oliveirareponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-09T18:12:37Zoai:repositorio.ufmg.br:1843/72118Repositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-09T18:12:37Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Automatic pain assessment in fetuses through transfer learning
title Automatic pain assessment in fetuses through transfer learning
spellingShingle Automatic pain assessment in fetuses through transfer learning
Thiago Melo de Oliveira
Computação – Teses
Aprendizado profundo – Teses
Redes neurais convolucionais – Teses
Feto – Dor – Diagnóstico – Teses
deep learning
transfer learning
fetal pain
automatic pain assessment
title_short Automatic pain assessment in fetuses through transfer learning
title_full Automatic pain assessment in fetuses through transfer learning
title_fullStr Automatic pain assessment in fetuses through transfer learning
title_full_unstemmed Automatic pain assessment in fetuses through transfer learning
title_sort Automatic pain assessment in fetuses through transfer learning
author Thiago Melo de Oliveira
author_facet Thiago Melo de Oliveira
author_role author
dc.contributor.author.fl_str_mv Thiago Melo de Oliveira
dc.subject.por.fl_str_mv Computação – Teses
Aprendizado profundo – Teses
Redes neurais convolucionais – Teses
Feto – Dor – Diagnóstico – Teses
deep learning
transfer learning
fetal pain
automatic pain assessment
topic Computação – Teses
Aprendizado profundo – Teses
Redes neurais convolucionais – Teses
Feto – Dor – Diagnóstico – Teses
deep learning
transfer learning
fetal pain
automatic pain assessment
description A exposição prolongada a circunstâncias de dor pode ter muitos efeitos colaterais na vida de um feto e causar consequências negativas no seu desenvolvimento. Assim, a avaliação e gestão da dor torna-se necessária para identificar esses cenários precocemente. Embora existam numerosas escalas de dor para auxiliar na avaliação da dor em recém-nascidos, até recentemente, não existia um método para detectar dor em fetos. Com base nessas escalas, algumas pesquisas foram desenvolvidas para avaliar automaticamente a dor por meio da análise de imagens com ajuda computacional. Ainda assim, nenhum trabalho desse tipo havia sido desenvolvido especificamente para fetos. Nesse cenário, propomos o uso de redes neurais convolucionais profundas para construir um modelo de aprendizado capaz de detectar automaticamente a presença de dor em fetos. Fazemos isso por meio da avaliação de suas expressões faciais em imagens coletadas de máquinas de ultrassom 4-D. Utilizando técnicas de transferência de aprendizado, partimos de uma rede pré-treinada na tarefa de reconhecimento facial e confirmamos que a transferência de aprendizado de uma tarefa semelhante obteve um desempenho melhor do que se fosse feita a partir de um conjunto de dados de propósito geral. Avaliamos nosso modelo em imagens extraídas de 13 gravações de vídeo de fetos submetidos a estímulos dolorosos e não dolorosos e alcançamos uma precisão de 84,8% na tarefa de discriminar imagens de dor daquelas em um grupo de controle não doloroso. Nossos resultados demonstram a eficácia da aplicação de tais métodos com imagens fetais e, acima de tudo, mostram que é possível desenvolver um modelo para detectar automaticamente dor em fetos.
publishDate 2020
dc.date.none.fl_str_mv 2020-03-31
2024-07-30T20:52:26Z
2024-07-30T20:52:26Z
2025-09-08T23:54:07Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1843/72118
url https://hdl.handle.net/1843/72118
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/pt/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/pt/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv repositorio@ufmg.br
_version_ 1856413894894944256