Automatic pain assessment in fetuses through transfer learning
| Ano de defesa: | 2020 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de Minas Gerais
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://hdl.handle.net/1843/72118 |
Resumo: | A exposição prolongada a circunstâncias de dor pode ter muitos efeitos colaterais na vida de um feto e causar consequências negativas no seu desenvolvimento. Assim, a avaliação e gestão da dor torna-se necessária para identificar esses cenários precocemente. Embora existam numerosas escalas de dor para auxiliar na avaliação da dor em recém-nascidos, até recentemente, não existia um método para detectar dor em fetos. Com base nessas escalas, algumas pesquisas foram desenvolvidas para avaliar automaticamente a dor por meio da análise de imagens com ajuda computacional. Ainda assim, nenhum trabalho desse tipo havia sido desenvolvido especificamente para fetos. Nesse cenário, propomos o uso de redes neurais convolucionais profundas para construir um modelo de aprendizado capaz de detectar automaticamente a presença de dor em fetos. Fazemos isso por meio da avaliação de suas expressões faciais em imagens coletadas de máquinas de ultrassom 4-D. Utilizando técnicas de transferência de aprendizado, partimos de uma rede pré-treinada na tarefa de reconhecimento facial e confirmamos que a transferência de aprendizado de uma tarefa semelhante obteve um desempenho melhor do que se fosse feita a partir de um conjunto de dados de propósito geral. Avaliamos nosso modelo em imagens extraídas de 13 gravações de vídeo de fetos submetidos a estímulos dolorosos e não dolorosos e alcançamos uma precisão de 84,8% na tarefa de discriminar imagens de dor daquelas em um grupo de controle não doloroso. Nossos resultados demonstram a eficácia da aplicação de tais métodos com imagens fetais e, acima de tudo, mostram que é possível desenvolver um modelo para detectar automaticamente dor em fetos. |
| id |
UFMG_7d24fda1592481ced3ea70ed01edc798 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufmg.br:1843/72118 |
| network_acronym_str |
UFMG |
| network_name_str |
Repositório Institucional da UFMG |
| repository_id_str |
|
| spelling |
Automatic pain assessment in fetuses through transfer learningComputação – TesesAprendizado profundo – TesesRedes neurais convolucionais – TesesFeto – Dor – Diagnóstico – Tesesdeep learningtransfer learningfetal painautomatic pain assessmentA exposição prolongada a circunstâncias de dor pode ter muitos efeitos colaterais na vida de um feto e causar consequências negativas no seu desenvolvimento. Assim, a avaliação e gestão da dor torna-se necessária para identificar esses cenários precocemente. Embora existam numerosas escalas de dor para auxiliar na avaliação da dor em recém-nascidos, até recentemente, não existia um método para detectar dor em fetos. Com base nessas escalas, algumas pesquisas foram desenvolvidas para avaliar automaticamente a dor por meio da análise de imagens com ajuda computacional. Ainda assim, nenhum trabalho desse tipo havia sido desenvolvido especificamente para fetos. Nesse cenário, propomos o uso de redes neurais convolucionais profundas para construir um modelo de aprendizado capaz de detectar automaticamente a presença de dor em fetos. Fazemos isso por meio da avaliação de suas expressões faciais em imagens coletadas de máquinas de ultrassom 4-D. Utilizando técnicas de transferência de aprendizado, partimos de uma rede pré-treinada na tarefa de reconhecimento facial e confirmamos que a transferência de aprendizado de uma tarefa semelhante obteve um desempenho melhor do que se fosse feita a partir de um conjunto de dados de propósito geral. Avaliamos nosso modelo em imagens extraídas de 13 gravações de vídeo de fetos submetidos a estímulos dolorosos e não dolorosos e alcançamos uma precisão de 84,8% na tarefa de discriminar imagens de dor daquelas em um grupo de controle não doloroso. Nossos resultados demonstram a eficácia da aplicação de tais métodos com imagens fetais e, acima de tudo, mostram que é possível desenvolver um modelo para detectar automaticamente dor em fetos.Universidade Federal de Minas Gerais2024-07-30T20:52:26Z2025-09-08T23:54:07Z2024-07-30T20:52:26Z2020-03-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/1843/72118enghttp://creativecommons.org/licenses/by-nc-nd/3.0/pt/info:eu-repo/semantics/openAccessThiago Melo de Oliveirareponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-09T18:12:37Zoai:repositorio.ufmg.br:1843/72118Repositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-09T18:12:37Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false |
| dc.title.none.fl_str_mv |
Automatic pain assessment in fetuses through transfer learning |
| title |
Automatic pain assessment in fetuses through transfer learning |
| spellingShingle |
Automatic pain assessment in fetuses through transfer learning Thiago Melo de Oliveira Computação – Teses Aprendizado profundo – Teses Redes neurais convolucionais – Teses Feto – Dor – Diagnóstico – Teses deep learning transfer learning fetal pain automatic pain assessment |
| title_short |
Automatic pain assessment in fetuses through transfer learning |
| title_full |
Automatic pain assessment in fetuses through transfer learning |
| title_fullStr |
Automatic pain assessment in fetuses through transfer learning |
| title_full_unstemmed |
Automatic pain assessment in fetuses through transfer learning |
| title_sort |
Automatic pain assessment in fetuses through transfer learning |
| author |
Thiago Melo de Oliveira |
| author_facet |
Thiago Melo de Oliveira |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Thiago Melo de Oliveira |
| dc.subject.por.fl_str_mv |
Computação – Teses Aprendizado profundo – Teses Redes neurais convolucionais – Teses Feto – Dor – Diagnóstico – Teses deep learning transfer learning fetal pain automatic pain assessment |
| topic |
Computação – Teses Aprendizado profundo – Teses Redes neurais convolucionais – Teses Feto – Dor – Diagnóstico – Teses deep learning transfer learning fetal pain automatic pain assessment |
| description |
A exposição prolongada a circunstâncias de dor pode ter muitos efeitos colaterais na vida de um feto e causar consequências negativas no seu desenvolvimento. Assim, a avaliação e gestão da dor torna-se necessária para identificar esses cenários precocemente. Embora existam numerosas escalas de dor para auxiliar na avaliação da dor em recém-nascidos, até recentemente, não existia um método para detectar dor em fetos. Com base nessas escalas, algumas pesquisas foram desenvolvidas para avaliar automaticamente a dor por meio da análise de imagens com ajuda computacional. Ainda assim, nenhum trabalho desse tipo havia sido desenvolvido especificamente para fetos. Nesse cenário, propomos o uso de redes neurais convolucionais profundas para construir um modelo de aprendizado capaz de detectar automaticamente a presença de dor em fetos. Fazemos isso por meio da avaliação de suas expressões faciais em imagens coletadas de máquinas de ultrassom 4-D. Utilizando técnicas de transferência de aprendizado, partimos de uma rede pré-treinada na tarefa de reconhecimento facial e confirmamos que a transferência de aprendizado de uma tarefa semelhante obteve um desempenho melhor do que se fosse feita a partir de um conjunto de dados de propósito geral. Avaliamos nosso modelo em imagens extraídas de 13 gravações de vídeo de fetos submetidos a estímulos dolorosos e não dolorosos e alcançamos uma precisão de 84,8% na tarefa de discriminar imagens de dor daquelas em um grupo de controle não doloroso. Nossos resultados demonstram a eficácia da aplicação de tais métodos com imagens fetais e, acima de tudo, mostram que é possível desenvolver um modelo para detectar automaticamente dor em fetos. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-03-31 2024-07-30T20:52:26Z 2024-07-30T20:52:26Z 2025-09-08T23:54:07Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1843/72118 |
| url |
https://hdl.handle.net/1843/72118 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/pt/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/pt/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
| publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMG instname:Universidade Federal de Minas Gerais (UFMG) instacron:UFMG |
| instname_str |
Universidade Federal de Minas Gerais (UFMG) |
| instacron_str |
UFMG |
| institution |
UFMG |
| reponame_str |
Repositório Institucional da UFMG |
| collection |
Repositório Institucional da UFMG |
| repository.name.fl_str_mv |
Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG) |
| repository.mail.fl_str_mv |
repositorio@ufmg.br |
| _version_ |
1856413894894944256 |