Estudo da influência das elevadas temperaturas sobre as propriedades mecânicas residuais e a durabilidade do concreto de alta resistência com e sem adição de fibras de polipropileno

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Heron Freitas Resende
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/1843/38137
Resumo: Structural elements when used in civil construction must be designed to meet the requirements of mechanical performance, durability, and fire resistance. The main attributes of high-strength concrete (HSC) are its greater mechanical strength and durability, which are fundamental to the performance of a building. However, given its low porosity, the HSC has lower fire resistance when compared to normal strength concrete (NSC), i.e., it is more prone to rupture, usually explosive, exposing the structure's reinforcement. Therefore, this work aims to study the influence of high temperatures on the residual mechanical properties and the durability of HSC with and without the addition of polypropylene fibers, as well as to analyze the possible occurrence of spalling. For this, tests were performed on cylindrical specimens in heating furnaces for increasing temperatures, which varied from 100 °C to 800 °C at a constant heating rate of 1 °C/min, remaining for 60 minutes at the pre-established temperature and then being submitted to a constant cooling rate of 1 °C/min. Subsequently, destructive and non-destructive tests and laboratory analyses were performed. When compared to the HSC without the use of fibers, the results showed that the use of 2 kg/m3 of polypropylene fibers in the HSC improved the compressive strength up to the temperature range of 400 °C and the tensile strength up to around 200 °C, while at room temperature there was a slight increase in the elastic modulus. The efficiency of the use of polypropylene fibers in the HSC was also verified in the results of durability tests, such as ultrasound up to approximately 200 °C, as well as improvements in the results of the electrical resistivity test up to the temperature range of 400 °C. On the other hand, in the absorption and mass loss tests, the HSC without the use of fibers performed better. At high temperatures, the results showed that the performance in residual mechanical properties and durability between the HSC with and without polypropylene fibers are practically similar. In the physical observation of the surface of the samples after the heating test between 600 °C and 800 °C, it was possible to identify how the use of polypropylene fiber in the HSC leads to reductions in cracks and pores on the surface when compared to the HSC without the use of fibers. As for the microstructure analysis, it was verified the appearance of channels in the concrete structure by the melting of polypropylene fibers after the heating test of the HSC with fibers samples. In addition, there was no spalling in any heating test for the HSC samples with and without polypropylene fibers.
id UFMG_7e2e23e2c87c8ad6d07e7ccdac1bb1ab
oai_identifier_str oai:repositorio.ufmg.br:1843/38137
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Estudo da influência das elevadas temperaturas sobre as propriedades mecânicas residuais e a durabilidade do concreto de alta resistência com e sem adição de fibras de polipropilenoConstrução civilMateriais de construçãoConcreto de alta resistênciaFibras de polipropilenoAltas temperaturasPropriedades mecânicasDurabilidade (Engenharia)Concreto de alta resistênciaFibra de polipropilenoAltas temperaturasPropriedades mecânicas residuaisDurabilidadeStructural elements when used in civil construction must be designed to meet the requirements of mechanical performance, durability, and fire resistance. The main attributes of high-strength concrete (HSC) are its greater mechanical strength and durability, which are fundamental to the performance of a building. However, given its low porosity, the HSC has lower fire resistance when compared to normal strength concrete (NSC), i.e., it is more prone to rupture, usually explosive, exposing the structure's reinforcement. Therefore, this work aims to study the influence of high temperatures on the residual mechanical properties and the durability of HSC with and without the addition of polypropylene fibers, as well as to analyze the possible occurrence of spalling. For this, tests were performed on cylindrical specimens in heating furnaces for increasing temperatures, which varied from 100 °C to 800 °C at a constant heating rate of 1 °C/min, remaining for 60 minutes at the pre-established temperature and then being submitted to a constant cooling rate of 1 °C/min. Subsequently, destructive and non-destructive tests and laboratory analyses were performed. When compared to the HSC without the use of fibers, the results showed that the use of 2 kg/m3 of polypropylene fibers in the HSC improved the compressive strength up to the temperature range of 400 °C and the tensile strength up to around 200 °C, while at room temperature there was a slight increase in the elastic modulus. The efficiency of the use of polypropylene fibers in the HSC was also verified in the results of durability tests, such as ultrasound up to approximately 200 °C, as well as improvements in the results of the electrical resistivity test up to the temperature range of 400 °C. On the other hand, in the absorption and mass loss tests, the HSC without the use of fibers performed better. At high temperatures, the results showed that the performance in residual mechanical properties and durability between the HSC with and without polypropylene fibers are practically similar. In the physical observation of the surface of the samples after the heating test between 600 °C and 800 °C, it was possible to identify how the use of polypropylene fiber in the HSC leads to reductions in cracks and pores on the surface when compared to the HSC without the use of fibers. As for the microstructure analysis, it was verified the appearance of channels in the concrete structure by the melting of polypropylene fibers after the heating test of the HSC with fibers samples. In addition, there was no spalling in any heating test for the HSC samples with and without polypropylene fibers.Universidade Federal de Minas Gerais2021-09-22T19:22:32Z2025-09-08T22:58:22Z2021-09-22T19:22:32Z2021-08-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/1843/38137porHeron Freitas Resendeinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-09T17:57:46Zoai:repositorio.ufmg.br:1843/38137Repositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-09T17:57:46Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Estudo da influência das elevadas temperaturas sobre as propriedades mecânicas residuais e a durabilidade do concreto de alta resistência com e sem adição de fibras de polipropileno
title Estudo da influência das elevadas temperaturas sobre as propriedades mecânicas residuais e a durabilidade do concreto de alta resistência com e sem adição de fibras de polipropileno
spellingShingle Estudo da influência das elevadas temperaturas sobre as propriedades mecânicas residuais e a durabilidade do concreto de alta resistência com e sem adição de fibras de polipropileno
Heron Freitas Resende
Construção civil
Materiais de construção
Concreto de alta resistência
Fibras de polipropileno
Altas temperaturas
Propriedades mecânicas
Durabilidade (Engenharia)
Concreto de alta resistência
Fibra de polipropileno
Altas temperaturas
Propriedades mecânicas residuais
Durabilidade
title_short Estudo da influência das elevadas temperaturas sobre as propriedades mecânicas residuais e a durabilidade do concreto de alta resistência com e sem adição de fibras de polipropileno
title_full Estudo da influência das elevadas temperaturas sobre as propriedades mecânicas residuais e a durabilidade do concreto de alta resistência com e sem adição de fibras de polipropileno
title_fullStr Estudo da influência das elevadas temperaturas sobre as propriedades mecânicas residuais e a durabilidade do concreto de alta resistência com e sem adição de fibras de polipropileno
title_full_unstemmed Estudo da influência das elevadas temperaturas sobre as propriedades mecânicas residuais e a durabilidade do concreto de alta resistência com e sem adição de fibras de polipropileno
title_sort Estudo da influência das elevadas temperaturas sobre as propriedades mecânicas residuais e a durabilidade do concreto de alta resistência com e sem adição de fibras de polipropileno
author Heron Freitas Resende
author_facet Heron Freitas Resende
author_role author
dc.contributor.author.fl_str_mv Heron Freitas Resende
dc.subject.por.fl_str_mv Construção civil
Materiais de construção
Concreto de alta resistência
Fibras de polipropileno
Altas temperaturas
Propriedades mecânicas
Durabilidade (Engenharia)
Concreto de alta resistência
Fibra de polipropileno
Altas temperaturas
Propriedades mecânicas residuais
Durabilidade
topic Construção civil
Materiais de construção
Concreto de alta resistência
Fibras de polipropileno
Altas temperaturas
Propriedades mecânicas
Durabilidade (Engenharia)
Concreto de alta resistência
Fibra de polipropileno
Altas temperaturas
Propriedades mecânicas residuais
Durabilidade
description Structural elements when used in civil construction must be designed to meet the requirements of mechanical performance, durability, and fire resistance. The main attributes of high-strength concrete (HSC) are its greater mechanical strength and durability, which are fundamental to the performance of a building. However, given its low porosity, the HSC has lower fire resistance when compared to normal strength concrete (NSC), i.e., it is more prone to rupture, usually explosive, exposing the structure's reinforcement. Therefore, this work aims to study the influence of high temperatures on the residual mechanical properties and the durability of HSC with and without the addition of polypropylene fibers, as well as to analyze the possible occurrence of spalling. For this, tests were performed on cylindrical specimens in heating furnaces for increasing temperatures, which varied from 100 °C to 800 °C at a constant heating rate of 1 °C/min, remaining for 60 minutes at the pre-established temperature and then being submitted to a constant cooling rate of 1 °C/min. Subsequently, destructive and non-destructive tests and laboratory analyses were performed. When compared to the HSC without the use of fibers, the results showed that the use of 2 kg/m3 of polypropylene fibers in the HSC improved the compressive strength up to the temperature range of 400 °C and the tensile strength up to around 200 °C, while at room temperature there was a slight increase in the elastic modulus. The efficiency of the use of polypropylene fibers in the HSC was also verified in the results of durability tests, such as ultrasound up to approximately 200 °C, as well as improvements in the results of the electrical resistivity test up to the temperature range of 400 °C. On the other hand, in the absorption and mass loss tests, the HSC without the use of fibers performed better. At high temperatures, the results showed that the performance in residual mechanical properties and durability between the HSC with and without polypropylene fibers are practically similar. In the physical observation of the surface of the samples after the heating test between 600 °C and 800 °C, it was possible to identify how the use of polypropylene fiber in the HSC leads to reductions in cracks and pores on the surface when compared to the HSC without the use of fibers. As for the microstructure analysis, it was verified the appearance of channels in the concrete structure by the melting of polypropylene fibers after the heating test of the HSC with fibers samples. In addition, there was no spalling in any heating test for the HSC samples with and without polypropylene fibers.
publishDate 2021
dc.date.none.fl_str_mv 2021-09-22T19:22:32Z
2021-09-22T19:22:32Z
2021-08-30
2025-09-08T22:58:22Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1843/38137
url https://hdl.handle.net/1843/38137
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv repositorio@ufmg.br
_version_ 1856413887371411456