Quantumness of correlations in finite dimensional systems

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Tiago Debarba
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Minas Gerais
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/1843/SMRA-BC6HAG
Resumo: Some phenomena are exclusive of quantum systems, in other words, there no exist counterpart in classical mechanics. Two examples extensively discussed in recent years are the quantum entanglement and quantum non locality, both are related to the existence of non separable states. The superposition of quantum states is another characteristic which deserves attention. Considering two distinct events in superposition, it implies the nonexistence of a measurement process capable of discriminating them. The superposition and the local measurement process together result in a new class of correlations, without counterpart in classical world, and go beyond quantum entanglement. These quantum correlations are named quantumness of correlations, and they are the main issue of this thesis. In the thesis we study three different approaches for the quantumness of correlations. Firstly, we define a geometrical measure of quantumness of correlations via the Schatten-p norm, which contain in its definition the trace norm, the Hilbert-Schmidt norm and the operator norm. We demonstrate that it is limited below by the quantum entanglement, calculated via entanglement witness. The second approach for the quantumness of correlations is in the context of accessible information and the discrimination of quantum states. It is known that quantum states only can be distinguished if they are orthogonal one each other. Then there exists a maximal amount of information which can be extracted from an ensemble of quantum states, performing measurements. The accessible information is limited by the Holevo¿s quantity, and the bound is attained only for orthogonal states. This limit in the amount of information that can be extracted from a quantum ensemble is related to the incapacity to distinguish quantum states by measurement process. Our study consists to investigate the capacity in to extract information, as well to distinguish the states of a given ensemble, when we are restricted to perform projective measurements. The restriction to projective measurements, as well the generalization to POVMs, can be approached via the Naimark¿s theorem, which state that a given POVM can be approached as a projective measurement in a embedded space. The embedding process can be performed, for example, coupling a pure ancilla on the state. Therefore this process cannot create any correlation between the system and the ancilla. The main goal is approach the quantumness of correlations in this context, to understand how they are affected by the embedding process, once that this process generalizes the measurement to be performed on the system. Finally we study quantum correlations in the context of indistinguishable particles. In our approach we obtained an entanglement measure for fermionic systems, it is a fermionic version of the generalized robustness of entanglement.We also introduced the concept of quantumness of correlations for indistinguishable particles. We calculated who are the states without quantumness of correlations from the activation protocol, in this context. As these states are a subset of separable states, we can attest what states are not entangled, once they are the states without quantumness of correlation. We also calculated a measure of quantumness of correlations for fermionic and bosonic systems.
id UFMG_83a8bcb4e0a188ce397929fe3cbf0078
oai_identifier_str oai:repositorio.ufmg.br:1843/SMRA-BC6HAG
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Quantumness of correlations in finite dimensional systemsDiscórdia quânticaMecânica quânticaInformação QuânticaCorrelações Quânticascorrelações quânticasInformação quânticaemaranhamentodiscórdia quânticaSome phenomena are exclusive of quantum systems, in other words, there no exist counterpart in classical mechanics. Two examples extensively discussed in recent years are the quantum entanglement and quantum non locality, both are related to the existence of non separable states. The superposition of quantum states is another characteristic which deserves attention. Considering two distinct events in superposition, it implies the nonexistence of a measurement process capable of discriminating them. The superposition and the local measurement process together result in a new class of correlations, without counterpart in classical world, and go beyond quantum entanglement. These quantum correlations are named quantumness of correlations, and they are the main issue of this thesis. In the thesis we study three different approaches for the quantumness of correlations. Firstly, we define a geometrical measure of quantumness of correlations via the Schatten-p norm, which contain in its definition the trace norm, the Hilbert-Schmidt norm and the operator norm. We demonstrate that it is limited below by the quantum entanglement, calculated via entanglement witness. The second approach for the quantumness of correlations is in the context of accessible information and the discrimination of quantum states. It is known that quantum states only can be distinguished if they are orthogonal one each other. Then there exists a maximal amount of information which can be extracted from an ensemble of quantum states, performing measurements. The accessible information is limited by the Holevo¿s quantity, and the bound is attained only for orthogonal states. This limit in the amount of information that can be extracted from a quantum ensemble is related to the incapacity to distinguish quantum states by measurement process. Our study consists to investigate the capacity in to extract information, as well to distinguish the states of a given ensemble, when we are restricted to perform projective measurements. The restriction to projective measurements, as well the generalization to POVMs, can be approached via the Naimark¿s theorem, which state that a given POVM can be approached as a projective measurement in a embedded space. The embedding process can be performed, for example, coupling a pure ancilla on the state. Therefore this process cannot create any correlation between the system and the ancilla. The main goal is approach the quantumness of correlations in this context, to understand how they are affected by the embedding process, once that this process generalizes the measurement to be performed on the system. Finally we study quantum correlations in the context of indistinguishable particles. In our approach we obtained an entanglement measure for fermionic systems, it is a fermionic version of the generalized robustness of entanglement.We also introduced the concept of quantumness of correlations for indistinguishable particles. We calculated who are the states without quantumness of correlations from the activation protocol, in this context. As these states are a subset of separable states, we can attest what states are not entangled, once they are the states without quantumness of correlation. We also calculated a measure of quantumness of correlations for fermionic and bosonic systems.Universidade Federal de Minas Gerais2019-08-12T21:11:04Z2025-09-08T23:14:10Z2019-08-12T21:11:04Z2014-04-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://hdl.handle.net/1843/SMRA-BC6HAGTiago Debarbainfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-08T23:14:10Zoai:repositorio.ufmg.br:1843/SMRA-BC6HAGRepositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-08T23:14:10Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Quantumness of correlations in finite dimensional systems
title Quantumness of correlations in finite dimensional systems
spellingShingle Quantumness of correlations in finite dimensional systems
Tiago Debarba
Discórdia quântica
Mecânica quântica
Informação Quântica
Correlações Quânticas
correlações quânticas
Informação quântica
emaranhamento
discórdia quântica
title_short Quantumness of correlations in finite dimensional systems
title_full Quantumness of correlations in finite dimensional systems
title_fullStr Quantumness of correlations in finite dimensional systems
title_full_unstemmed Quantumness of correlations in finite dimensional systems
title_sort Quantumness of correlations in finite dimensional systems
author Tiago Debarba
author_facet Tiago Debarba
author_role author
dc.contributor.author.fl_str_mv Tiago Debarba
dc.subject.por.fl_str_mv Discórdia quântica
Mecânica quântica
Informação Quântica
Correlações Quânticas
correlações quânticas
Informação quântica
emaranhamento
discórdia quântica
topic Discórdia quântica
Mecânica quântica
Informação Quântica
Correlações Quânticas
correlações quânticas
Informação quântica
emaranhamento
discórdia quântica
description Some phenomena are exclusive of quantum systems, in other words, there no exist counterpart in classical mechanics. Two examples extensively discussed in recent years are the quantum entanglement and quantum non locality, both are related to the existence of non separable states. The superposition of quantum states is another characteristic which deserves attention. Considering two distinct events in superposition, it implies the nonexistence of a measurement process capable of discriminating them. The superposition and the local measurement process together result in a new class of correlations, without counterpart in classical world, and go beyond quantum entanglement. These quantum correlations are named quantumness of correlations, and they are the main issue of this thesis. In the thesis we study three different approaches for the quantumness of correlations. Firstly, we define a geometrical measure of quantumness of correlations via the Schatten-p norm, which contain in its definition the trace norm, the Hilbert-Schmidt norm and the operator norm. We demonstrate that it is limited below by the quantum entanglement, calculated via entanglement witness. The second approach for the quantumness of correlations is in the context of accessible information and the discrimination of quantum states. It is known that quantum states only can be distinguished if they are orthogonal one each other. Then there exists a maximal amount of information which can be extracted from an ensemble of quantum states, performing measurements. The accessible information is limited by the Holevo¿s quantity, and the bound is attained only for orthogonal states. This limit in the amount of information that can be extracted from a quantum ensemble is related to the incapacity to distinguish quantum states by measurement process. Our study consists to investigate the capacity in to extract information, as well to distinguish the states of a given ensemble, when we are restricted to perform projective measurements. The restriction to projective measurements, as well the generalization to POVMs, can be approached via the Naimark¿s theorem, which state that a given POVM can be approached as a projective measurement in a embedded space. The embedding process can be performed, for example, coupling a pure ancilla on the state. Therefore this process cannot create any correlation between the system and the ancilla. The main goal is approach the quantumness of correlations in this context, to understand how they are affected by the embedding process, once that this process generalizes the measurement to be performed on the system. Finally we study quantum correlations in the context of indistinguishable particles. In our approach we obtained an entanglement measure for fermionic systems, it is a fermionic version of the generalized robustness of entanglement.We also introduced the concept of quantumness of correlations for indistinguishable particles. We calculated who are the states without quantumness of correlations from the activation protocol, in this context. As these states are a subset of separable states, we can attest what states are not entangled, once they are the states without quantumness of correlation. We also calculated a measure of quantumness of correlations for fermionic and bosonic systems.
publishDate 2014
dc.date.none.fl_str_mv 2014-04-11
2019-08-12T21:11:04Z
2019-08-12T21:11:04Z
2025-09-08T23:14:10Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1843/SMRA-BC6HAG
url https://hdl.handle.net/1843/SMRA-BC6HAG
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv repositorio@ufmg.br
_version_ 1856414051506061312