Bootstrap methods for generalized autoregressive moving average models
| Ano de defesa: | 2018 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de Minas Gerais
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://hdl.handle.net/1843/BIRC-BB4NX5 |
Resumo: | This final paper aims to find a suitable Bootstrap Method for the Generalized Autoregressive Moving Average Model. The focus is on the Moving Block Bootstrap (MBB) resampling scheme with its performance being evaluated through a Monte Carlo study and contrasted to their asymptotic Gaussian counterpart. It is stablished that the aforementioned resampling procedure can generate good estimates of parameters bias and confidence intervals. Though, the results rely heavily on the simulated model parameters and block lengths used in the MBB procedure. |
| id |
UFMG_91e1bda0fb4e176e8f8726ff1ea1494c |
|---|---|
| oai_identifier_str |
oai:repositorio.ufmg.br:1843/BIRC-BB4NX5 |
| network_acronym_str |
UFMG |
| network_name_str |
Repositório Institucional da UFMG |
| repository_id_str |
|
| spelling |
Bootstrap methods for generalized autoregressive moving average modelsBootstrap (Estatística)EstatísticaAnálise de séries temporaisMBBTime- Series BOOTSTRAPGARMA modelsThis final paper aims to find a suitable Bootstrap Method for the Generalized Autoregressive Moving Average Model. The focus is on the Moving Block Bootstrap (MBB) resampling scheme with its performance being evaluated through a Monte Carlo study and contrasted to their asymptotic Gaussian counterpart. It is stablished that the aforementioned resampling procedure can generate good estimates of parameters bias and confidence intervals. Though, the results rely heavily on the simulated model parameters and block lengths used in the MBB procedure.Universidade Federal de Minas Gerais2019-08-11T14:51:56Z2025-09-08T23:30:16Z2019-08-11T14:51:56Z2018-06-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/1843/BIRC-BB4NX5Matheus de Vasconcellos Barrosoinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-08T23:30:16Zoai:repositorio.ufmg.br:1843/BIRC-BB4NX5Repositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-08T23:30:16Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false |
| dc.title.none.fl_str_mv |
Bootstrap methods for generalized autoregressive moving average models |
| title |
Bootstrap methods for generalized autoregressive moving average models |
| spellingShingle |
Bootstrap methods for generalized autoregressive moving average models Matheus de Vasconcellos Barroso Bootstrap (Estatística) Estatística Análise de séries temporais MBB Time- Series BOOTSTRAP GARMA models |
| title_short |
Bootstrap methods for generalized autoregressive moving average models |
| title_full |
Bootstrap methods for generalized autoregressive moving average models |
| title_fullStr |
Bootstrap methods for generalized autoregressive moving average models |
| title_full_unstemmed |
Bootstrap methods for generalized autoregressive moving average models |
| title_sort |
Bootstrap methods for generalized autoregressive moving average models |
| author |
Matheus de Vasconcellos Barroso |
| author_facet |
Matheus de Vasconcellos Barroso |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Matheus de Vasconcellos Barroso |
| dc.subject.por.fl_str_mv |
Bootstrap (Estatística) Estatística Análise de séries temporais MBB Time- Series BOOTSTRAP GARMA models |
| topic |
Bootstrap (Estatística) Estatística Análise de séries temporais MBB Time- Series BOOTSTRAP GARMA models |
| description |
This final paper aims to find a suitable Bootstrap Method for the Generalized Autoregressive Moving Average Model. The focus is on the Moving Block Bootstrap (MBB) resampling scheme with its performance being evaluated through a Monte Carlo study and contrasted to their asymptotic Gaussian counterpart. It is stablished that the aforementioned resampling procedure can generate good estimates of parameters bias and confidence intervals. Though, the results rely heavily on the simulated model parameters and block lengths used in the MBB procedure. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-06-11 2019-08-11T14:51:56Z 2019-08-11T14:51:56Z 2025-09-08T23:30:16Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1843/BIRC-BB4NX5 |
| url |
https://hdl.handle.net/1843/BIRC-BB4NX5 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
| publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMG instname:Universidade Federal de Minas Gerais (UFMG) instacron:UFMG |
| instname_str |
Universidade Federal de Minas Gerais (UFMG) |
| instacron_str |
UFMG |
| institution |
UFMG |
| reponame_str |
Repositório Institucional da UFMG |
| collection |
Repositório Institucional da UFMG |
| repository.name.fl_str_mv |
Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG) |
| repository.mail.fl_str_mv |
repositorio@ufmg.br |
| _version_ |
1856413935053307904 |