Exact Bayesian inference for Markov switching Cox processes
| Ano de defesa: | 2015 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de Minas Gerais
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://hdl.handle.net/1843/BUBD-9WGFNQ |
Resumo: | Statistical modelling of point patterns is an important and common problem in several applications. An important point process, and a generalisation of the Poisson process, is the Cox process, where the intensity function is itself stochastic. We focus on Cox processes in which the intensity function is driven by a nite state space continuous-time Markov chain. We refer to these as Markov switching Cox processes (MSCP). We investigate some probabilistic properties of these processes, three new theorems for these processes are derived and we develop a Bayesian methodology to perform exact inference based on MCMC algorithms. Since the likelihood function is tractable, it facilitates the development of an exact methodology. Simulated studies are presented in order to investigate the efficiency of the methodology on the estimation of MSCP's intensity function and the parameters indexing its law. Finally, an analysis with real data is performed. |
| id |
UFMG_96db87bb72fb6a23b0bb0f84f2915de6 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufmg.br:1843/BUBD-9WGFNQ |
| network_acronym_str |
UFMG |
| network_name_str |
Repositório Institucional da UFMG |
| repository_id_str |
|
| spelling |
Exact Bayesian inference for Markov switching Cox processesEstatísticaMarkov, processos deTeoria bayesiana de decisão estatisticaEstatísticaStatistical modelling of point patterns is an important and common problem in several applications. An important point process, and a generalisation of the Poisson process, is the Cox process, where the intensity function is itself stochastic. We focus on Cox processes in which the intensity function is driven by a nite state space continuous-time Markov chain. We refer to these as Markov switching Cox processes (MSCP). We investigate some probabilistic properties of these processes, three new theorems for these processes are derived and we develop a Bayesian methodology to perform exact inference based on MCMC algorithms. Since the likelihood function is tractable, it facilitates the development of an exact methodology. Simulated studies are presented in order to investigate the efficiency of the methodology on the estimation of MSCP's intensity function and the parameters indexing its law. Finally, an analysis with real data is performed.Universidade Federal de Minas Gerais2019-08-11T02:06:53Z2025-09-09T00:50:39Z2019-08-11T02:06:53Z2015-03-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/1843/BUBD-9WGFNQLivia Maria Dutrainfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-09T00:50:39Zoai:repositorio.ufmg.br:1843/BUBD-9WGFNQRepositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-09T00:50:39Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false |
| dc.title.none.fl_str_mv |
Exact Bayesian inference for Markov switching Cox processes |
| title |
Exact Bayesian inference for Markov switching Cox processes |
| spellingShingle |
Exact Bayesian inference for Markov switching Cox processes Livia Maria Dutra Estatística Markov, processos de Teoria bayesiana de decisão estatistica Estatística |
| title_short |
Exact Bayesian inference for Markov switching Cox processes |
| title_full |
Exact Bayesian inference for Markov switching Cox processes |
| title_fullStr |
Exact Bayesian inference for Markov switching Cox processes |
| title_full_unstemmed |
Exact Bayesian inference for Markov switching Cox processes |
| title_sort |
Exact Bayesian inference for Markov switching Cox processes |
| author |
Livia Maria Dutra |
| author_facet |
Livia Maria Dutra |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Livia Maria Dutra |
| dc.subject.por.fl_str_mv |
Estatística Markov, processos de Teoria bayesiana de decisão estatistica Estatística |
| topic |
Estatística Markov, processos de Teoria bayesiana de decisão estatistica Estatística |
| description |
Statistical modelling of point patterns is an important and common problem in several applications. An important point process, and a generalisation of the Poisson process, is the Cox process, where the intensity function is itself stochastic. We focus on Cox processes in which the intensity function is driven by a nite state space continuous-time Markov chain. We refer to these as Markov switching Cox processes (MSCP). We investigate some probabilistic properties of these processes, three new theorems for these processes are derived and we develop a Bayesian methodology to perform exact inference based on MCMC algorithms. Since the likelihood function is tractable, it facilitates the development of an exact methodology. Simulated studies are presented in order to investigate the efficiency of the methodology on the estimation of MSCP's intensity function and the parameters indexing its law. Finally, an analysis with real data is performed. |
| publishDate |
2015 |
| dc.date.none.fl_str_mv |
2015-03-02 2019-08-11T02:06:53Z 2019-08-11T02:06:53Z 2025-09-09T00:50:39Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1843/BUBD-9WGFNQ |
| url |
https://hdl.handle.net/1843/BUBD-9WGFNQ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
| publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMG instname:Universidade Federal de Minas Gerais (UFMG) instacron:UFMG |
| instname_str |
Universidade Federal de Minas Gerais (UFMG) |
| instacron_str |
UFMG |
| institution |
UFMG |
| reponame_str |
Repositório Institucional da UFMG |
| collection |
Repositório Institucional da UFMG |
| repository.name.fl_str_mv |
Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG) |
| repository.mail.fl_str_mv |
repositorio@ufmg.br |
| _version_ |
1856413933232979968 |