Um modelo de interface extensível para sistemas de mineração de dados por regras de associação

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Elisa Tuler de Albergaria
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/1843/RVMR-7L6HTZ
Resumo: Currently, one of the main challenges of computing is the huge volume of data due to the storage facility and increasing use of technology in different contexts. The analysis of this data provides support for decisions in distinct areas. However, without efficient computational techniques it becomes unfeasible to analyze this large volume of data. Thus, data mining emerges as a promising field, since it allows for knowledge discovery from large volumes of data. Amongst the many techniques available for data mining, in this work we focus on association rules. Even though association Rules data mining systems are very popular they present users with a great challenge. These systems require users to have technical knowledge about data mining techniques in order to interact with them. In this work we propose an extensible interface model which aims at widening the use of data mining systems. To do so, the model allows for a new abstract high level interface specific to a context to be created. This new high level interface abstracts the technical knowledge required, making it easier to interact with the system. Based on this model, an extensible module that can be added on to 2nd generation data mining systems can be developed. The model considers two distinct user profiles: the experts and final users. Expert users are those who not only have knowledge of the domain, but also of the required technical concepts to interact with the system, whereas final users have domain knowledge, but not data mining technical knowledge. Expert users interact with the extensible module and create a new high level interface specific to final users context with which they can interact. The model is grounded on Semiotic Engineering theory, which perceives the interaction as designer-to-user mmunicative act. The model allows expert users to become co-authors of the message being transmitted by the systems, as they create new high level interfaces to final users. Preliminary evaluations of the model were executed and also a prototype was developed to provide indicators of the feasibility and utility of the model. The indicators pointed to the ability of the model to widen the use of the system to users who do not have data-mining technical knowledge at a low cost
id UFMG_9a6b349daf7bdf0537f6f8dfd8841f4e
oai_identifier_str oai:repositorio.ufmg.br:1843/RVMR-7L6HTZ
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Um modelo de interface extensível para sistemas de mineração de dados por regras de associaçãoInteracao homem maquinaComputaçãoMineração de dados (Computação)Interação homem maquinaMineração de dadosCurrently, one of the main challenges of computing is the huge volume of data due to the storage facility and increasing use of technology in different contexts. The analysis of this data provides support for decisions in distinct areas. However, without efficient computational techniques it becomes unfeasible to analyze this large volume of data. Thus, data mining emerges as a promising field, since it allows for knowledge discovery from large volumes of data. Amongst the many techniques available for data mining, in this work we focus on association rules. Even though association Rules data mining systems are very popular they present users with a great challenge. These systems require users to have technical knowledge about data mining techniques in order to interact with them. In this work we propose an extensible interface model which aims at widening the use of data mining systems. To do so, the model allows for a new abstract high level interface specific to a context to be created. This new high level interface abstracts the technical knowledge required, making it easier to interact with the system. Based on this model, an extensible module that can be added on to 2nd generation data mining systems can be developed. The model considers two distinct user profiles: the experts and final users. Expert users are those who not only have knowledge of the domain, but also of the required technical concepts to interact with the system, whereas final users have domain knowledge, but not data mining technical knowledge. Expert users interact with the extensible module and create a new high level interface specific to final users context with which they can interact. The model is grounded on Semiotic Engineering theory, which perceives the interaction as designer-to-user mmunicative act. The model allows expert users to become co-authors of the message being transmitted by the systems, as they create new high level interfaces to final users. Preliminary evaluations of the model were executed and also a prototype was developed to provide indicators of the feasibility and utility of the model. The indicators pointed to the ability of the model to widen the use of the system to users who do not have data-mining technical knowledge at a low costUniversidade Federal de Minas Gerais2019-08-11T21:00:27Z2025-09-09T00:59:32Z2019-08-11T21:00:27Z2008-07-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/1843/RVMR-7L6HTZElisa Tuler de Albergariainfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-09T00:59:32Zoai:repositorio.ufmg.br:1843/RVMR-7L6HTZRepositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-09T00:59:32Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Um modelo de interface extensível para sistemas de mineração de dados por regras de associação
title Um modelo de interface extensível para sistemas de mineração de dados por regras de associação
spellingShingle Um modelo de interface extensível para sistemas de mineração de dados por regras de associação
Elisa Tuler de Albergaria
Interacao homem maquina
Computação
Mineração de dados (Computação)
Interação homem maquina
Mineração de dados
title_short Um modelo de interface extensível para sistemas de mineração de dados por regras de associação
title_full Um modelo de interface extensível para sistemas de mineração de dados por regras de associação
title_fullStr Um modelo de interface extensível para sistemas de mineração de dados por regras de associação
title_full_unstemmed Um modelo de interface extensível para sistemas de mineração de dados por regras de associação
title_sort Um modelo de interface extensível para sistemas de mineração de dados por regras de associação
author Elisa Tuler de Albergaria
author_facet Elisa Tuler de Albergaria
author_role author
dc.contributor.author.fl_str_mv Elisa Tuler de Albergaria
dc.subject.por.fl_str_mv Interacao homem maquina
Computação
Mineração de dados (Computação)
Interação homem maquina
Mineração de dados
topic Interacao homem maquina
Computação
Mineração de dados (Computação)
Interação homem maquina
Mineração de dados
description Currently, one of the main challenges of computing is the huge volume of data due to the storage facility and increasing use of technology in different contexts. The analysis of this data provides support for decisions in distinct areas. However, without efficient computational techniques it becomes unfeasible to analyze this large volume of data. Thus, data mining emerges as a promising field, since it allows for knowledge discovery from large volumes of data. Amongst the many techniques available for data mining, in this work we focus on association rules. Even though association Rules data mining systems are very popular they present users with a great challenge. These systems require users to have technical knowledge about data mining techniques in order to interact with them. In this work we propose an extensible interface model which aims at widening the use of data mining systems. To do so, the model allows for a new abstract high level interface specific to a context to be created. This new high level interface abstracts the technical knowledge required, making it easier to interact with the system. Based on this model, an extensible module that can be added on to 2nd generation data mining systems can be developed. The model considers two distinct user profiles: the experts and final users. Expert users are those who not only have knowledge of the domain, but also of the required technical concepts to interact with the system, whereas final users have domain knowledge, but not data mining technical knowledge. Expert users interact with the extensible module and create a new high level interface specific to final users context with which they can interact. The model is grounded on Semiotic Engineering theory, which perceives the interaction as designer-to-user mmunicative act. The model allows expert users to become co-authors of the message being transmitted by the systems, as they create new high level interfaces to final users. Preliminary evaluations of the model were executed and also a prototype was developed to provide indicators of the feasibility and utility of the model. The indicators pointed to the ability of the model to widen the use of the system to users who do not have data-mining technical knowledge at a low cost
publishDate 2008
dc.date.none.fl_str_mv 2008-07-01
2019-08-11T21:00:27Z
2019-08-11T21:00:27Z
2025-09-09T00:59:32Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1843/RVMR-7L6HTZ
url https://hdl.handle.net/1843/RVMR-7L6HTZ
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv repositorio@ufmg.br
_version_ 1856413990075236352