Modelos de regressão t-Tobit com erros nas covariáveis

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Gustavo Henrique Mitraud Assis Rocha
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/1843/BUBD-9UNGM5
Resumo: In this work, we develop a non-standard linear regression analysis by considering that the dependent variable is censored and also that some of the explanatory variables are measured with additive errors. In addition, our censored measurement error regression model is speci ed by assuming heavy-tailed distributions for the underlying probabilistic process. Speci cally, our analysis focuses on assuming a multivariate Student-t joint distribution for the error terms and the unobserved true covariates. In this sense, the proposed model will be robust enough to protect our inferences of atypical or in uential observations. For the model estimation, we consider the maximum likelihood methodology, in which we include the estimation of the asymptotic variance of the maximum likelihood estimators and we also develop an EM type algorithm to obtain the estimates, and also the Bayesian paradigm, in which we use a data augmentation approach and develop a MCMC algorithm to sample from the posterior distributions. The proposed methodology is exible enough to be adapted for heavy-tailed distributions coming from the class of scale mixture of the normal distribution. The performance of the newly developed methodology is evaluated throughout a Monte Carlo study as well as a case sudy analysis.
id UFMG_a06ef9b3063a94ef6b844e576fdfae8e
oai_identifier_str oai:repositorio.ufmg.br:1843/BUBD-9UNGM5
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Modelos de regressão t-Tobit com erros nas covariáveisAnálise de regressãoEstatísticaProbabilidadesDistribuição (Probabilidades)EstátisticaIn this work, we develop a non-standard linear regression analysis by considering that the dependent variable is censored and also that some of the explanatory variables are measured with additive errors. In addition, our censored measurement error regression model is speci ed by assuming heavy-tailed distributions for the underlying probabilistic process. Speci cally, our analysis focuses on assuming a multivariate Student-t joint distribution for the error terms and the unobserved true covariates. In this sense, the proposed model will be robust enough to protect our inferences of atypical or in uential observations. For the model estimation, we consider the maximum likelihood methodology, in which we include the estimation of the asymptotic variance of the maximum likelihood estimators and we also develop an EM type algorithm to obtain the estimates, and also the Bayesian paradigm, in which we use a data augmentation approach and develop a MCMC algorithm to sample from the posterior distributions. The proposed methodology is exible enough to be adapted for heavy-tailed distributions coming from the class of scale mixture of the normal distribution. The performance of the newly developed methodology is evaluated throughout a Monte Carlo study as well as a case sudy analysis.Universidade Federal de Minas Gerais2019-08-09T16:02:27Z2025-09-08T23:31:31Z2019-08-09T16:02:27Z2014-10-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://hdl.handle.net/1843/BUBD-9UNGM5Gustavo Henrique Mitraud Assis Rochainfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-09T18:44:24Zoai:repositorio.ufmg.br:1843/BUBD-9UNGM5Repositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-09T18:44:24Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Modelos de regressão t-Tobit com erros nas covariáveis
title Modelos de regressão t-Tobit com erros nas covariáveis
spellingShingle Modelos de regressão t-Tobit com erros nas covariáveis
Gustavo Henrique Mitraud Assis Rocha
Análise de regressão
Estatística
Probabilidades
Distribuição (Probabilidades)
Estátistica
title_short Modelos de regressão t-Tobit com erros nas covariáveis
title_full Modelos de regressão t-Tobit com erros nas covariáveis
title_fullStr Modelos de regressão t-Tobit com erros nas covariáveis
title_full_unstemmed Modelos de regressão t-Tobit com erros nas covariáveis
title_sort Modelos de regressão t-Tobit com erros nas covariáveis
author Gustavo Henrique Mitraud Assis Rocha
author_facet Gustavo Henrique Mitraud Assis Rocha
author_role author
dc.contributor.author.fl_str_mv Gustavo Henrique Mitraud Assis Rocha
dc.subject.por.fl_str_mv Análise de regressão
Estatística
Probabilidades
Distribuição (Probabilidades)
Estátistica
topic Análise de regressão
Estatística
Probabilidades
Distribuição (Probabilidades)
Estátistica
description In this work, we develop a non-standard linear regression analysis by considering that the dependent variable is censored and also that some of the explanatory variables are measured with additive errors. In addition, our censored measurement error regression model is speci ed by assuming heavy-tailed distributions for the underlying probabilistic process. Speci cally, our analysis focuses on assuming a multivariate Student-t joint distribution for the error terms and the unobserved true covariates. In this sense, the proposed model will be robust enough to protect our inferences of atypical or in uential observations. For the model estimation, we consider the maximum likelihood methodology, in which we include the estimation of the asymptotic variance of the maximum likelihood estimators and we also develop an EM type algorithm to obtain the estimates, and also the Bayesian paradigm, in which we use a data augmentation approach and develop a MCMC algorithm to sample from the posterior distributions. The proposed methodology is exible enough to be adapted for heavy-tailed distributions coming from the class of scale mixture of the normal distribution. The performance of the newly developed methodology is evaluated throughout a Monte Carlo study as well as a case sudy analysis.
publishDate 2014
dc.date.none.fl_str_mv 2014-10-07
2019-08-09T16:02:27Z
2019-08-09T16:02:27Z
2025-09-08T23:31:31Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1843/BUBD-9UNGM5
url https://hdl.handle.net/1843/BUBD-9UNGM5
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv repositorio@ufmg.br
_version_ 1856413914128973824