Relevance, novelty, diversity and personalization in tag recommendation

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Fabiano Muniz Belem
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/1843/ESBF-B2LFAX
Resumo: The design and evaluation of tag recommendation methods have historically focused on maximizing the relevance of the suggested tags for a given object, such as a movie or a song. However, relevance by itself may not be enough to guarantee recommendation usefulness. In this dissertation, we aim at proposing novel solutions that effectively address multiple aspects related to the tag recommendation problem, notably, relevance, novelty, diversity, and personalization. Towards that goal, we (1) propose and combine various tag quality attributes by means of heuristics and learning-to-rank (L2R) techniques, and (2) extend our best methods to address personalization, novelty (tag's specificity), and diversity (topic coverage), considering different scenarios of interest. Our evaluation, performed with data from five Web 2.0 applications, demonstrates the effectiveness of our new methods, and attest the viability to increase novelty and diversity with only a slight impact on relevance.
id UFMG_a0ad28db6323b4d13f931339a9dbad4e
oai_identifier_str oai:repositorio.ufmg.br:1843/ESBF-B2LFAX
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Relevance, novelty, diversity and personalization in tag recommendationTag RecommendationRelevancePersonalizationDiversityComputaçãoNoveltyTag RecommendationRelevancePersonalizationDiversityNoveltyThe design and evaluation of tag recommendation methods have historically focused on maximizing the relevance of the suggested tags for a given object, such as a movie or a song. However, relevance by itself may not be enough to guarantee recommendation usefulness. In this dissertation, we aim at proposing novel solutions that effectively address multiple aspects related to the tag recommendation problem, notably, relevance, novelty, diversity, and personalization. Towards that goal, we (1) propose and combine various tag quality attributes by means of heuristics and learning-to-rank (L2R) techniques, and (2) extend our best methods to address personalization, novelty (tag's specificity), and diversity (topic coverage), considering different scenarios of interest. Our evaluation, performed with data from five Web 2.0 applications, demonstrates the effectiveness of our new methods, and attest the viability to increase novelty and diversity with only a slight impact on relevance.Universidade Federal de Minas Gerais2019-08-14T13:53:48Z2025-09-09T00:56:35Z2019-08-14T13:53:48Z2018-03-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://hdl.handle.net/1843/ESBF-B2LFAXFabiano Muniz Beleminfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-09T00:56:35Zoai:repositorio.ufmg.br:1843/ESBF-B2LFAXRepositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-09T00:56:35Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Relevance, novelty, diversity and personalization in tag recommendation
title Relevance, novelty, diversity and personalization in tag recommendation
spellingShingle Relevance, novelty, diversity and personalization in tag recommendation
Fabiano Muniz Belem
Tag Recommendation
Relevance
Personalization
Diversity
Computação
Novelty
Tag Recommendation
Relevance
Personalization
Diversity
Novelty
title_short Relevance, novelty, diversity and personalization in tag recommendation
title_full Relevance, novelty, diversity and personalization in tag recommendation
title_fullStr Relevance, novelty, diversity and personalization in tag recommendation
title_full_unstemmed Relevance, novelty, diversity and personalization in tag recommendation
title_sort Relevance, novelty, diversity and personalization in tag recommendation
author Fabiano Muniz Belem
author_facet Fabiano Muniz Belem
author_role author
dc.contributor.author.fl_str_mv Fabiano Muniz Belem
dc.subject.por.fl_str_mv Tag Recommendation
Relevance
Personalization
Diversity
Computação
Novelty
Tag Recommendation
Relevance
Personalization
Diversity
Novelty
topic Tag Recommendation
Relevance
Personalization
Diversity
Computação
Novelty
Tag Recommendation
Relevance
Personalization
Diversity
Novelty
description The design and evaluation of tag recommendation methods have historically focused on maximizing the relevance of the suggested tags for a given object, such as a movie or a song. However, relevance by itself may not be enough to guarantee recommendation usefulness. In this dissertation, we aim at proposing novel solutions that effectively address multiple aspects related to the tag recommendation problem, notably, relevance, novelty, diversity, and personalization. Towards that goal, we (1) propose and combine various tag quality attributes by means of heuristics and learning-to-rank (L2R) techniques, and (2) extend our best methods to address personalization, novelty (tag's specificity), and diversity (topic coverage), considering different scenarios of interest. Our evaluation, performed with data from five Web 2.0 applications, demonstrates the effectiveness of our new methods, and attest the viability to increase novelty and diversity with only a slight impact on relevance.
publishDate 2018
dc.date.none.fl_str_mv 2018-03-06
2019-08-14T13:53:48Z
2019-08-14T13:53:48Z
2025-09-09T00:56:35Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1843/ESBF-B2LFAX
url https://hdl.handle.net/1843/ESBF-B2LFAX
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv repositorio@ufmg.br
_version_ 1856413938488442880