Relevance, novelty, diversity and personalization in tag recommendation
| Ano de defesa: | 2018 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Minas Gerais
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://hdl.handle.net/1843/ESBF-B2LFAX |
Resumo: | The design and evaluation of tag recommendation methods have historically focused on maximizing the relevance of the suggested tags for a given object, such as a movie or a song. However, relevance by itself may not be enough to guarantee recommendation usefulness. In this dissertation, we aim at proposing novel solutions that effectively address multiple aspects related to the tag recommendation problem, notably, relevance, novelty, diversity, and personalization. Towards that goal, we (1) propose and combine various tag quality attributes by means of heuristics and learning-to-rank (L2R) techniques, and (2) extend our best methods to address personalization, novelty (tag's specificity), and diversity (topic coverage), considering different scenarios of interest. Our evaluation, performed with data from five Web 2.0 applications, demonstrates the effectiveness of our new methods, and attest the viability to increase novelty and diversity with only a slight impact on relevance. |
| id |
UFMG_a0ad28db6323b4d13f931339a9dbad4e |
|---|---|
| oai_identifier_str |
oai:repositorio.ufmg.br:1843/ESBF-B2LFAX |
| network_acronym_str |
UFMG |
| network_name_str |
Repositório Institucional da UFMG |
| repository_id_str |
|
| spelling |
Relevance, novelty, diversity and personalization in tag recommendationTag RecommendationRelevancePersonalizationDiversityComputaçãoNoveltyTag RecommendationRelevancePersonalizationDiversityNoveltyThe design and evaluation of tag recommendation methods have historically focused on maximizing the relevance of the suggested tags for a given object, such as a movie or a song. However, relevance by itself may not be enough to guarantee recommendation usefulness. In this dissertation, we aim at proposing novel solutions that effectively address multiple aspects related to the tag recommendation problem, notably, relevance, novelty, diversity, and personalization. Towards that goal, we (1) propose and combine various tag quality attributes by means of heuristics and learning-to-rank (L2R) techniques, and (2) extend our best methods to address personalization, novelty (tag's specificity), and diversity (topic coverage), considering different scenarios of interest. Our evaluation, performed with data from five Web 2.0 applications, demonstrates the effectiveness of our new methods, and attest the viability to increase novelty and diversity with only a slight impact on relevance.Universidade Federal de Minas Gerais2019-08-14T13:53:48Z2025-09-09T00:56:35Z2019-08-14T13:53:48Z2018-03-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://hdl.handle.net/1843/ESBF-B2LFAXFabiano Muniz Beleminfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-09T00:56:35Zoai:repositorio.ufmg.br:1843/ESBF-B2LFAXRepositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-09T00:56:35Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false |
| dc.title.none.fl_str_mv |
Relevance, novelty, diversity and personalization in tag recommendation |
| title |
Relevance, novelty, diversity and personalization in tag recommendation |
| spellingShingle |
Relevance, novelty, diversity and personalization in tag recommendation Fabiano Muniz Belem Tag Recommendation Relevance Personalization Diversity Computação Novelty Tag Recommendation Relevance Personalization Diversity Novelty |
| title_short |
Relevance, novelty, diversity and personalization in tag recommendation |
| title_full |
Relevance, novelty, diversity and personalization in tag recommendation |
| title_fullStr |
Relevance, novelty, diversity and personalization in tag recommendation |
| title_full_unstemmed |
Relevance, novelty, diversity and personalization in tag recommendation |
| title_sort |
Relevance, novelty, diversity and personalization in tag recommendation |
| author |
Fabiano Muniz Belem |
| author_facet |
Fabiano Muniz Belem |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Fabiano Muniz Belem |
| dc.subject.por.fl_str_mv |
Tag Recommendation Relevance Personalization Diversity Computação Novelty Tag Recommendation Relevance Personalization Diversity Novelty |
| topic |
Tag Recommendation Relevance Personalization Diversity Computação Novelty Tag Recommendation Relevance Personalization Diversity Novelty |
| description |
The design and evaluation of tag recommendation methods have historically focused on maximizing the relevance of the suggested tags for a given object, such as a movie or a song. However, relevance by itself may not be enough to guarantee recommendation usefulness. In this dissertation, we aim at proposing novel solutions that effectively address multiple aspects related to the tag recommendation problem, notably, relevance, novelty, diversity, and personalization. Towards that goal, we (1) propose and combine various tag quality attributes by means of heuristics and learning-to-rank (L2R) techniques, and (2) extend our best methods to address personalization, novelty (tag's specificity), and diversity (topic coverage), considering different scenarios of interest. Our evaluation, performed with data from five Web 2.0 applications, demonstrates the effectiveness of our new methods, and attest the viability to increase novelty and diversity with only a slight impact on relevance. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-03-06 2019-08-14T13:53:48Z 2019-08-14T13:53:48Z 2025-09-09T00:56:35Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1843/ESBF-B2LFAX |
| url |
https://hdl.handle.net/1843/ESBF-B2LFAX |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
| publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMG instname:Universidade Federal de Minas Gerais (UFMG) instacron:UFMG |
| instname_str |
Universidade Federal de Minas Gerais (UFMG) |
| instacron_str |
UFMG |
| institution |
UFMG |
| reponame_str |
Repositório Institucional da UFMG |
| collection |
Repositório Institucional da UFMG |
| repository.name.fl_str_mv |
Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG) |
| repository.mail.fl_str_mv |
repositorio@ufmg.br |
| _version_ |
1856413938488442880 |