Abordagem multiobjetivo para o problema de sequenciamento de tarefas em máquinas paralelas não-relacionadas com a deterioração da máquina dependente da sequência

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Vívian Ludimila Aguiar Santos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/1843/66472
Resumo: This work addresses a scheduling problem unrelated to parallel machines, in which jobs significantly impact machine deterioration. This deterioration, in turn, adversely affects machine performance, resulting in progressive increases in job processing times over time. To tackle this challenge, a mixed-integer nonlinear programming model is proposed, aiming to optimize two objectives simultaneously: minimizing the maximum job completion time, known as makespan, and minimizing the job total tardiness. An innovative approach is developed to extend the meta-heuristic Iterated Local Search (ILS) to multiobjective problems. The resulting algorithm, named Iterated Local Search Based on Decomposition (ILS/D), employs a decomposition strategy similar to that used by the Multiobjective Evolutionary Algorithm Based on Decomposition (MOEA/D). In this context, ILS is utilized as a search mechanism to enhance the exploration process within the MOEA/D framework. One distinctive advantage of ILS/D is that a single-objective ILS can optimize each subproblem under the decomposition and aggregation framework, thus obviating the need for multiobjective local search. To evaluate the effectiveness of ILS/D, comparisons were made with other algorithms, including MOEA/D, Non-dominated Sorting Genetic Algorithm II (NSGA-II), and Pareto Iterated Local Search (PILS). The results demonstrate that ILS/D significantly outperforms the other mentioned algorithms. These findings highlight the decomposition strategy's effectiveness in evolutionary algorithms and illustrate the ILS algorithm's successful extension to complex multiobjective problem resolution. Furthermore, a multiobjective approach involving maintenance is proposed. In this approach, the integration of maintenance into production scheduling is sought, to mitigate machine deterioration and reduce the total processing time. The central purpose is to determine the strategic allocation of maintenance, or maintenance jobs, to maximize the overall system performance. When a machine fails within a production system or when its level of deterioration reaches a critical threshold, that machine becomes unable to continue production until it is restored to a fully operational state through maintenance intervention. In other words, the machine's performance must be restored to 100%. Machine downtime results in production time losses and can overload other machines in the system, causing them to become unavailable as well. In this context, three distinct strategies for scheduling maintenance jobs are developed, all operating within the ILS/D algorithm. A comprehensive set of numerical experiments is conducted on instances of various sizes, demonstrating that the developed algorithms can provide more precise solutions to the maintenance scheduling problem.
id UFMG_a74da08121f26fe9bd4d9cfc8f5ab983
oai_identifier_str oai:repositorio.ufmg.br:1843/66472
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Abordagem multiobjetivo para o problema de sequenciamento de tarefas em máquinas paralelas não-relacionadas com a deterioração da máquina dependente da sequênciaEngenharia elétricaMáquinasOtimização multiobjetivoManutençãoAlgoritmosCálculos numéricosHeurísticaDeterioração da máquinaDeterioração dependente da sequênciaSequenciamento da manutençãoOtimização multiobjetivoMeta-heurísticasMakespanAtraso totalMáquinas paralelas não-relacionadasThis work addresses a scheduling problem unrelated to parallel machines, in which jobs significantly impact machine deterioration. This deterioration, in turn, adversely affects machine performance, resulting in progressive increases in job processing times over time. To tackle this challenge, a mixed-integer nonlinear programming model is proposed, aiming to optimize two objectives simultaneously: minimizing the maximum job completion time, known as makespan, and minimizing the job total tardiness. An innovative approach is developed to extend the meta-heuristic Iterated Local Search (ILS) to multiobjective problems. The resulting algorithm, named Iterated Local Search Based on Decomposition (ILS/D), employs a decomposition strategy similar to that used by the Multiobjective Evolutionary Algorithm Based on Decomposition (MOEA/D). In this context, ILS is utilized as a search mechanism to enhance the exploration process within the MOEA/D framework. One distinctive advantage of ILS/D is that a single-objective ILS can optimize each subproblem under the decomposition and aggregation framework, thus obviating the need for multiobjective local search. To evaluate the effectiveness of ILS/D, comparisons were made with other algorithms, including MOEA/D, Non-dominated Sorting Genetic Algorithm II (NSGA-II), and Pareto Iterated Local Search (PILS). The results demonstrate that ILS/D significantly outperforms the other mentioned algorithms. These findings highlight the decomposition strategy's effectiveness in evolutionary algorithms and illustrate the ILS algorithm's successful extension to complex multiobjective problem resolution. Furthermore, a multiobjective approach involving maintenance is proposed. In this approach, the integration of maintenance into production scheduling is sought, to mitigate machine deterioration and reduce the total processing time. The central purpose is to determine the strategic allocation of maintenance, or maintenance jobs, to maximize the overall system performance. When a machine fails within a production system or when its level of deterioration reaches a critical threshold, that machine becomes unable to continue production until it is restored to a fully operational state through maintenance intervention. In other words, the machine's performance must be restored to 100%. Machine downtime results in production time losses and can overload other machines in the system, causing them to become unavailable as well. In this context, three distinct strategies for scheduling maintenance jobs are developed, all operating within the ILS/D algorithm. A comprehensive set of numerical experiments is conducted on instances of various sizes, demonstrating that the developed algorithms can provide more precise solutions to the maintenance scheduling problem.Universidade Federal de Minas Gerais2024-03-25T19:22:08Z2025-09-08T23:54:22Z2024-03-25T19:22:08Z2023-11-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://hdl.handle.net/1843/66472porhttp://creativecommons.org/licenses/by-nc-nd/3.0/pt/info:eu-repo/semantics/openAccessVívian Ludimila Aguiar Santosreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-08T23:54:22Zoai:repositorio.ufmg.br:1843/66472Repositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-08T23:54:22Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Abordagem multiobjetivo para o problema de sequenciamento de tarefas em máquinas paralelas não-relacionadas com a deterioração da máquina dependente da sequência
title Abordagem multiobjetivo para o problema de sequenciamento de tarefas em máquinas paralelas não-relacionadas com a deterioração da máquina dependente da sequência
spellingShingle Abordagem multiobjetivo para o problema de sequenciamento de tarefas em máquinas paralelas não-relacionadas com a deterioração da máquina dependente da sequência
Vívian Ludimila Aguiar Santos
Engenharia elétrica
Máquinas
Otimização multiobjetivo
Manutenção
Algoritmos
Cálculos numéricos
Heurística
Deterioração da máquina
Deterioração dependente da sequência
Sequenciamento da manutenção
Otimização multiobjetivo
Meta-heurísticas
Makespan
Atraso total
Máquinas paralelas não-relacionadas
title_short Abordagem multiobjetivo para o problema de sequenciamento de tarefas em máquinas paralelas não-relacionadas com a deterioração da máquina dependente da sequência
title_full Abordagem multiobjetivo para o problema de sequenciamento de tarefas em máquinas paralelas não-relacionadas com a deterioração da máquina dependente da sequência
title_fullStr Abordagem multiobjetivo para o problema de sequenciamento de tarefas em máquinas paralelas não-relacionadas com a deterioração da máquina dependente da sequência
title_full_unstemmed Abordagem multiobjetivo para o problema de sequenciamento de tarefas em máquinas paralelas não-relacionadas com a deterioração da máquina dependente da sequência
title_sort Abordagem multiobjetivo para o problema de sequenciamento de tarefas em máquinas paralelas não-relacionadas com a deterioração da máquina dependente da sequência
author Vívian Ludimila Aguiar Santos
author_facet Vívian Ludimila Aguiar Santos
author_role author
dc.contributor.author.fl_str_mv Vívian Ludimila Aguiar Santos
dc.subject.por.fl_str_mv Engenharia elétrica
Máquinas
Otimização multiobjetivo
Manutenção
Algoritmos
Cálculos numéricos
Heurística
Deterioração da máquina
Deterioração dependente da sequência
Sequenciamento da manutenção
Otimização multiobjetivo
Meta-heurísticas
Makespan
Atraso total
Máquinas paralelas não-relacionadas
topic Engenharia elétrica
Máquinas
Otimização multiobjetivo
Manutenção
Algoritmos
Cálculos numéricos
Heurística
Deterioração da máquina
Deterioração dependente da sequência
Sequenciamento da manutenção
Otimização multiobjetivo
Meta-heurísticas
Makespan
Atraso total
Máquinas paralelas não-relacionadas
description This work addresses a scheduling problem unrelated to parallel machines, in which jobs significantly impact machine deterioration. This deterioration, in turn, adversely affects machine performance, resulting in progressive increases in job processing times over time. To tackle this challenge, a mixed-integer nonlinear programming model is proposed, aiming to optimize two objectives simultaneously: minimizing the maximum job completion time, known as makespan, and minimizing the job total tardiness. An innovative approach is developed to extend the meta-heuristic Iterated Local Search (ILS) to multiobjective problems. The resulting algorithm, named Iterated Local Search Based on Decomposition (ILS/D), employs a decomposition strategy similar to that used by the Multiobjective Evolutionary Algorithm Based on Decomposition (MOEA/D). In this context, ILS is utilized as a search mechanism to enhance the exploration process within the MOEA/D framework. One distinctive advantage of ILS/D is that a single-objective ILS can optimize each subproblem under the decomposition and aggregation framework, thus obviating the need for multiobjective local search. To evaluate the effectiveness of ILS/D, comparisons were made with other algorithms, including MOEA/D, Non-dominated Sorting Genetic Algorithm II (NSGA-II), and Pareto Iterated Local Search (PILS). The results demonstrate that ILS/D significantly outperforms the other mentioned algorithms. These findings highlight the decomposition strategy's effectiveness in evolutionary algorithms and illustrate the ILS algorithm's successful extension to complex multiobjective problem resolution. Furthermore, a multiobjective approach involving maintenance is proposed. In this approach, the integration of maintenance into production scheduling is sought, to mitigate machine deterioration and reduce the total processing time. The central purpose is to determine the strategic allocation of maintenance, or maintenance jobs, to maximize the overall system performance. When a machine fails within a production system or when its level of deterioration reaches a critical threshold, that machine becomes unable to continue production until it is restored to a fully operational state through maintenance intervention. In other words, the machine's performance must be restored to 100%. Machine downtime results in production time losses and can overload other machines in the system, causing them to become unavailable as well. In this context, three distinct strategies for scheduling maintenance jobs are developed, all operating within the ILS/D algorithm. A comprehensive set of numerical experiments is conducted on instances of various sizes, demonstrating that the developed algorithms can provide more precise solutions to the maintenance scheduling problem.
publishDate 2023
dc.date.none.fl_str_mv 2023-11-27
2024-03-25T19:22:08Z
2024-03-25T19:22:08Z
2025-09-08T23:54:22Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1843/66472
url https://hdl.handle.net/1843/66472
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/pt/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/pt/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv repositorio@ufmg.br
_version_ 1856414015957237760